A High-Performance Distributed Library for Large-Scale Bundle Adjustment

Overview

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment

This repo contains an official implementation of MegBA.

MegBA is a fast and distributed library for large-scale Bundle Adjustment (BA). MegBA has a novel end-to-end vectorised BA algorithm which can fully exploit the massive parallel cores on GPUs, thus speeding up the entire BA computation. It also has a novel distributed BA algorithm that can automatically partition BA problems, and solve BA sub-problems using distributed GPUs. The GPUs synchronise intermediate solving state using network-efficient collective communication, and the synchronisation is designed to minimise communication cost. MegBA has a memory-efficient GPU runtime and it exposes g2o-compatible APIs. Experiments show that MegBA can out-perform state-of-the-art BA libraries (i.e., Ceres and DeepLM) by ~50x and ~5x respectively, in public large-scale BA benchmarks.

Version

  • 2021/12/06 Beta version released! It corresponds to this paper.
  • General version code release (Expected Dec 31 2021)
  • memory-efficient version with implicit Hessian (TBD)
  • analytical differential module, IMU factor, prior factor (TBD)

Paper:

Quickstart

Dependencies:

You can also easily install all dependencies with script: script

Demo with BAL dataset:

  • Download any pre.txt.bz2 file from BAL Dataset: https://grail.cs.washington.edu/projects/bal/ and uncompressed.

  • Compile

    mkdir build
    cd build
    cmake ..
    make -j4 BAL_Double
  • Run the demo (Venice-1778)

    cd examples
    ./BAL_Double --name=Venice --world_size=2 --iter=100 --solver_tol=1e-1 --solver_refuse_ratio=1 --solver_max_iter=100 --tau=1e4 --epsilon1=1 --epsilon2=1e-10
    • world_size: number of GPUs available
    • iter: the maximal number of LM iteration
    • epsilon: threshold in LM
    • solver_tol: tolerance of solver (distributed PCG solver)
    • solver_refuse_ratio: early stop for the solver
    • solver_max_iter: the maximal iteration of solver
    • tau: the initial region

Notes for the practitioners

  • Currently, MegBA implements automatic differentation only for generalizability. Please consider implementing your own analytical differentiation module.
  • If you use devices without modern inter-device communication (i.e., NVLinks..), you might find the data transfer is the bottleneck.
  • Empirically, we found it is necessary to customize the LM trust-region strategies and tune its hyper-parameters to further boost the performance.

Documentation

Under doc/ (Coming soon...)

Collaborate with Us

Please check here for MegBA's future plan.

If you are intereted in MegBA and want to collaborate, you can:

  • Apply for an Internship at Megvii Research 3D, please send your resume to [email protected], with your expected starting date. (subject: 3D组CUDA实习生-Name) Unfortunately, now we are only able to host interns with work authorization in China.
  • As an external collaborator (coding), just fork this repo and send PRs. We will review your PR carefully (and merge it into MegBA).
  • As an algorithm/novelty contributor, please send an email to [email protected].
  • Any new feature request, you can send an email to [email protected] as well. Note that it is not guaranteed the requested feature will be added or added soon

Contact Information:

BibTeX Citation

If you find MegBA useful for your project, please consider citing:

@misc{2021megba,
  title={MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment}, 
  author={Jie Ren and Wenteng Liang and Ran Yan and Luo Mai and Shiwen Liu and Xiao Liu},
  year={2021},
  eprint={2112.01349},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

License

MegBA is licensed under the Apache License, Version 2.0.

Owner
旷视研究院 3D 组
旷视科技(Face++)研究院 3D 组(原 SLAM 组)
旷视研究院 3D 组
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022