3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

Overview

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

arXiv

Introduction

This repository contains the code and models for the following paper.

Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks
Cheng Yu, Bo Wang, Bo Yang, Robby T. Tan
Computer Vision and Pattern Recognition, CVPR 2021.

Overview of the proposed method:

Updates

  • 06/18/2021 evaluation code of PCK (person-centric) and PCK_abs (camera-centric), and pre-trained model for MuPoTS dataset tested and released

Installation

Dependencies

Pytorch >= 1.5
Python >= 3.6

Create an enviroment.

conda create -n 3dmpp python=3.6
conda activate 3dmpp

Install the latest version of pytorch (tested on pytorch 1.5 - 1.7) based on your OS and GPU driver installed following install pytorch. For example, command to use on Linux with CUDA 11.0 is like:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch

Install dependencies

pip install - r requirements.txt

Build the Fast Gaussian Map tool:

cd lib/fastgaus
python setup.py build_ext --inplace
cd ../..

Models and Testing Data

Pre-trained Models

Download the pre-trained model and processed human keypoint files here, and unzip the downloaded zip file to this project's root directory, two folders are expected to see after doing that (i.e., ./ckpts and ./mupots).

MuPoTS Dataset

MuPoTS eval set is needed to perform evaluation as the results reported in Table 3 in the main paper, which is available on the MuPoTS dataset website. You need to download the mupots-3d-eval.zip file, unzip it, and run get_mupots-3d.sh to download the dataset. After the download is complete, a MultiPersonTestSet.zip is avaiable, ~5.6 GB. Unzip it and move the folder MultiPersonTestSet to the root directory of the project to perform evaluation on MuPoTS test set. Now you should see the following directory structure.

${3D-Multi-Person-Pose_ROOT}
|-- ckpts              <-- the downloaded pre-trained Models
|-- lib
|-- MultiPersonTestSet <-- the newly added MuPoTS eval set
|-- mupots             <-- the downloaded processed human keypoint files
|-- util
|-- 3DMPP_framework.png
|-- calculate_mupots_btmup.py
|-- other python code, LICENSE, and README files
...

Usage

MuPoTS dataset evaluation

3D Multi-Person Pose Estimation Evaluation on MuPoTS Dataset

The following table is similar to Table 3 in the main paper, where the quantitative evaluations on MuPoTS-3D dataset are provided (best performance in bold). Evaluation instructions to reproduce the results (PCK and PCK_abs) are provided in the next section.

Group Methods PCK PCK_abs
Person-centric (relative 3D pose) Mehta et al., 3DV'18 65.0 N/A
Person-centric (relative 3D pose) Rogez et al., IEEE TPAMI'19 70.6 N/A
Person-centric (relative 3D pose) Mehta et al., ACM TOG'20 70.4 N/A
Person-centric (relative 3D pose) Cheng et al., ICCV'19 74.6 N/A
Person-centric (relative 3D pose) Cheng et al., AAAI'20 80.5 N/A
Camera-centric (absolute 3D pose) Moon et al., ICCV'19 82.5 31.8
Camera-centric (absolute 3D pose) Lin et al., ECCV'20 83.7 35.2
Camera-centric (absolute 3D pose) Zhen et al., ECCV'20 80.5 38.7
Camera-centric (absolute 3D pose) Li et al., ECCV'20 82.0 43.8
Camera-centric (absolute 3D pose) Cheng et al., AAAI'21 87.5 45.7
Camera-centric (absolute 3D pose) Our method 89.6 48.0

Run evaluation on MuPoTS dataset with estimated 2D joints as input

We split the whole pipeline into several separate steps to make it more clear for the users.

python calculate_mupots_topdown_pts.py
python calculate_mupots_topdown_depth.py
python calculate_mupots_btmup.py
python calculate_mupots_integrate.py

Please note that python calculate_mupots_btmup.py is going to take a while (30-40 minutes depending on your machine).

To evaluate the person-centric 3D multi-person pose estimation:

python eval_mupots_pck.py

After running the above code, the following PCK (person-centric, pelvis-based origin) value is expected, which matches the number reported in Table 3, PCK = 89 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.8994453169938017

To evaluate camera-centric (i.e., camera coordinates) 3D multi-person pose estimation:

python eval_mupots_pck_abs.py

After running the above code, the following PCK_abs (camera-centric) value is expected, which matches the number reported in Table 3, PCK_abs = 48 (percentage) in the paper.

...
Seq: 18
Seq: 19
Seq: 20
PCK_MEAN: 0.48514110933606175

License

The code is released under the MIT license. See LICENSE for details.

Citation

If this work is useful for your research, please cite our paper.

@InProceedings{Cheng_2021_CVPR,
    author    = {Cheng, Yu and Wang, Bo and Yang, Bo and Tan, Robby T.},
    title     = {Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7649-7659}
}
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022