This is the pytorch re-implementation of the IterNorm

Overview

IterNorm-pytorch

Pytorch reimplementation of the IterNorm methods, which is described in the following paper:

Iterative Normalization: Beyond Standardization towards Efficient Whitening

Lei Huang, Yi Zhou, Fan Zhu, Li Liu, Ling Shao

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019 (accepted). arXiv:1904.03441

This project also provide the pytorch implementation of Decorrelated Batch Normalization (CVPR 2018, arXiv:1804.08450), more details please refer to the Torch project.

Requirements and Dependency

  • Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.6.8 and pytorch-nightly 1.0.0)
  • (For visualization if needed), install the dependency visdom by:
pip install visdom

Experiments

1. VGG-network on Cifar-10 datasets:

run the scripts in the ./cifar10/experiments/vgg. Note that the dataset root dir should be altered by setting the para '--dataset-root', and the dataset style is described as:

-<dataset-root>
|-cifar10-batches-py
||-data_batch_1
||-data_batch_2
||-data_batch_3
||-data_batch_4
||-data_batch_5
||-test_batch

If the dataset is not exist, the script will download it, under the conditioning that the dataset-root dir is existed

2. Wide-Residual-Network on Cifar-10 datasets:

run the scripts in the ./cifar10/experiments/wrn.

3. ImageNet experiments.

run the scripts in the ./ImageNet/experiment. Note that resnet18 experimetns are run on one GPU, and resnet-50/101 are run on 4 GPU in the scripts.

Note that the dataset root dir should be altered by setting the para '--dataset-root'. and the dataset style is described as:

-<dataset-root>
|-train
||-class1
||-...
||-class1000  
|-var
||-class1
||-...
||-class1000  

Using IterNorm in other projects/tasks

(1) copy ./extension/normalization/iterative_normalization.py to the respective dir.

(2) import the IterNorm class in iterative_normalization.py

(3) generally speaking, replace the BatchNorm layer by IterNorm, or add it in any place if you want to the feature/channel decorrelated. Considering the efficiency (Note that BatchNorm is intergrated in cudnn while IterNorm is based on the pytorch script without optimization), we recommend 1) replace the first BatchNorm; 2) insert extra IterNorm before the first skip connection in resnet; 3) inserted before the final linear classfier as described in the paper.

(4) Some tips related to the hyperparamters (Group size G and Iterative Number T). We recommend G=64 (i.e., the channel number in per group is 64) and T=5 by default. If you run on large batch size (e.g.>1024), you can either increase G or T. For fine tunning, fix G=64 or G=32, and search T={3,4,5,6,7,8} may help.

Owner
Lei Huang
Ph.D in BeiHang University, research interest: deep learning, semi-supervised learning, active learning and their application to visual and textual data.
Lei Huang
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
Ian Covert 130 Jan 01, 2023
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

Mikaela Uy 294 Dec 12, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022