This is an early in-development version of training CLIP models with hivemind.

Overview

A transformer that does not hog your GPU memory

This is an early in-development codebase: if you want a stable and documented hivemind codebase, look at CALM or dalle-hivemind.

Readme under construction

LeanTransformer implements a specific version of transformer with two goals in mind:

  • using as little GPU memory as possible
  • stable training for very large models

The core philosophy of LeanTransformer is to replace torch.autograd with grad students. Automatic differentiation is great if you want to test ideas quickly, less so if a single training run can cost over $4 million (or >1000 years in grad school).

Related work: GSO

Our implementation partially replaces automatic differentiation with Grad Student Optimization (GSO) - a biologically inspired black box optimization algorithm. In the past, GSO has seen widespread adoption thanks to its strong theoretical foundations and unparalleled cost efficiency (Chom et al). Previous successfully applied GSO for hyperparameter tuning and natural language generation. To the best of our knowledge we are the first work to successfully apply distributed fault-tolerant GSO for optimizing the memory footprint of transformers. We summarize our findings below:

Memory saving features:

Other features:

Not implemented:

  • In reversible mode, one can further save memory by computing backward in chunks:
    • a few tokens at a time for feedforward layers, since grad(concat(mlp(x1), mlp(x2))) = concat(grad(mlp(x1)), grad(mlp(x2)))
    • a few heads at a time for self-attention, since grad(head1 + head2) = grad(head1) + grad(head2), where head1 and head2 are attention outputs after linear projection
  • Attention could be computed in O(sqrt(n)) memory (Rabe et al, 2021)
  • No sparse or linear attention: they are great for very long sequences. However, for large models, attention is not a bottleneck in typical NLP and vision tasks (tested gpt-3 up to length 4096).
  • Per-block grad scaling as described in (Ramesh et al, 2021) - we rely on Sandwich Norm to maintain stability up to 96 layers (did not test more). However, it would be nice to have per-block scaling to avoid the need for an extra LayerNorm.
  • Something else that we missed - please find us on discord.

A day will come a day when we explain all these modifications and provide instructions on how to tune them. But it is not this day!. Until then, we'll happily answer any questions on our discord.

Running the code

[under constructuion] - use the instructions from CALM readme

Acknowledgements:

  • Most of the architecture and stability optimizations were learned through the BigScience research workshop
  • YSDA community helped us survive through the early messy versions of this code
  • NeuroPark trained the first practical model (SahajBERT-XL, SoTA in bengali, details here)
  • TODO DALLE community: at least mention the demo, maybe we end up training something even cooler
  • TODO NCAI community: ask them how best to acknowledge them
  • TODO Hugging Face: ask them how best to acknowledge them
  • TODO Personal: stas00, samyam, jared, more? (this does not include co-authors: Tim,Lucile,Quentin,Denis,Gennady,etc; also, this does not include hivemind contributors)
Owner
<a href=[email protected]">
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022