Improving adversarial robustness by a coupling rejection strategy

Overview

Adversarial Training with Rectified Rejection

The code for the paper Adversarial Training with Rectified Rejection.

Environment settings and libraries we used in our experiments

This project is tested under the following environment settings:

  • OS: Ubuntu 18.04.4
  • GPU: Geforce 2080 Ti or Tesla P100
  • Cuda: 10.1, Cudnn: v7.6
  • Python: 3.6
  • PyTorch: >= 1.6.0
  • Torchvision: >= 0.6.0

Acknowledgement

The codes are modifed based on Rice et al. 2020, and the model architectures are implemented by pytorch-cifar.

Training Commands

Below we provide running commands training the models with the RR module, taking the setting of PGD-AT + RR (ResNet-18) as an example:

python train_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --attack pgd --lr-schedule piecewise \
                                              --epochs 110 --epsilon 8 \
                                              --attack-iters 10 --pgd-alpha 2 \
                                              --fname auto \
                                              --batch-size 128 \
                                              --adaptivetrain --adaptivetrainlambda 1.0 \
                                              --weight_decay 5e-4 \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --dataset 'CIFAR-10' \
                                              --ATframework 'PGDAT' \
                                              --SGconfidenceW

The FLAG --model_name can be PreActResNet18_twobranch_DenseV1 (ResNet-18) or WideResNet_twobranch_DenseV1 (WRN-34-10). For alternating different AT frameworks, we can set the FLAG --ATframework to be one of PGDAT, TRADES, CCAT.

Evaluation Commands

Below we provide running commands for evaluations.

Evaluating under the PGD attacks

The trained model is saved at trained_models/model_path, where the specific name of model_path is automatically generated during training. The command for evaluating under PGD attacks is:

python eval_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --evalset test --norm l_inf --epsilon 8 \
                                              --attack-iters 1000 --pgd-alpha 2 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate

Evaluating under the adaptive CW attacks

The parameter FLAGs --binary_search_steps, --CW_iter, --CW_confidence can be changed, where --detectmetric indicates the rejector that needs to be adaptively evaded.

python eval_cifar_CW.py --model_name PreActResNet18_twobranch_DenseV1 --evalset adaptiveCWtest \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 --seed 2020 \
                                              --binary_search_steps 9 --CW_iter 100 --CW_confidence 0 \
                                              --threatmodel linf --reportmodel linf \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --detectmetric 'RR' \
                                              --dataset 'CIFAR-10'

Evaluating under multi-target and GAMA attacks

The running command for evaluating under multi-target attacks is activated by the FLAG --evalonMultitarget as:

python eval_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --evalset test --norm l_inf --epsilon 8 \
                                              --attack-iters 100 --pgd-alpha 2 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --evalonMultitarget --restarts 1

The running command for evaluating under GAMA attacks is activated by the FLAG --evalonGAMA_PGD or --evalonGAMA_FW as:

python eval_cifar.py --model_name PreActResNet18_twobranch_DenseV1 --evalset test --norm l_inf --epsilon 8 \
                                              --attack-iters 100 --pgd-alpha 2 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate \
                                              --evalonGAMA_FW

Evaluating under CIFAR-10-C

The running command for evaluating on common corruptions in CIFAR-10-C is:

python eval_cifar_CIFAR10-C.py --model_name PreActResNet18_twobranch_DenseV1 \
                                              --fname trained_models/model_path \
                                              --load_epoch -1 \
                                              --dataset 'CIFAR-10' \
                                              --twobranch --useBN \
                                              --selfreweightCalibrate
Owner
Tianyu Pang
Ph.D. Student (Machine Learning)
Tianyu Pang
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021