Sum-Product Probabilistic Language

Overview

Actions Status pypi

Sum-Product Probabilistic Language

SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic inference queries. The language handles continuous, discrete, and mixed-type probability distributions; many-to-one numerical transformations; and a query language that includes general predicates on random variables.

Users express generative models as probabilistic programs with standard imperative constructs, such as arrays, if/else branches, for loops, etc. The program is then translated to a sum-product expression (a generalization of sum-product networks) that statically represents the probability distribution of all random variables in the program. This expression is used to deliver answers to probabilistic inference queries.

A system description of SPPL is given in the following paper:

SPPL: Probabilistic Programming with Fast Exact Symbolic Inference. Saad, F. A.; Rinard, M. C.; and Mansinghka, V. K. In PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, June 20-25, Virtual, Canada. ACM, New York, NY, USA. 2021. https://doi.org/10.1145/3453483.3454078.

Installation

This software is tested on Ubuntu 18.04 and requires a Python 3.6+ environment. SPPL is available on PyPI

$ python -m pip install sppl

To install the Jupyter interface, first obtain the system-wide dependencies in requirements.sh and then run

$ python -m pip install 'sppl[magics]'

Examples

The easiest way to use SPPL is via the browser-based Jupyter interface, which allows for interactive modeling, querying, and plotting. Refer to the .ipynb notebooks under the examples directory.

Benchmarks

Please refer to the artifact at the ACM Digital Library: https://doi.org/10.1145/3453483.3454078

Guide to Source Code

Please refer to GUIDE.md for a description of the main source files in this repository.

Tests

To run the test suite as a user, first install the test dependencies:

$ python -m pip install 'sppl[tests]'

Then run the test suite:

$ python -m pytest --pyargs sppl

To run the test suite as a developer:

  • To run crash tests: $ ./check.sh
  • To run integration tests: $ ./check.sh ci
  • To run a specific test: $ ./check.sh [<pytest-opts>] /path/to/test.py
  • To run the examples: $ ./check.sh examples
  • To build a docker image: $ ./check.sh docker
  • To generate a coverage report: $ ./check.sh coverage

To view the coverage report, open htmlcov/index.html in the browser.

Language Reference

Coming Soon!

Citation

To cite this work, please use the following BibTeX.

@inproceedings{saad2021sppl,
title           = {{SPPL:} Probabilistic Programming with Fast Exact Symbolic Inference},
author          = {Saad, Feras A. and Rinard, Martin C. and Mansinghka, Vikash K.},
booktitle       = {PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Design and Implementation},
pages           = {804--819},
year            = 2021,
location        = {Virtual, Canada},
publisher       = {ACM},
address         = {New York, NY, USA},
doi             = {10.1145/3453483.3454078},
address         = {New York, NY, USA},
keywords        = {probabilistic programming, symbolic execution, static analysis},
}

License

Apache 2.0; see LICENSE.txt

Acknowledgments

The logo was designed by McCoy R. Becker.

Owner
MIT Probabilistic Computing Project
MIT Probabilistic Computing Project
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022