A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Related tags

Deep Learningcrysx_nn
Overview

Contributors Forks Stargazers Issues MIT License LinkedIn


crysx_nn

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.
Explore the docs »

View Demo · Report Bug · Request Feature

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Features
  5. Roadmap
  6. Contributing
  7. License
  8. Contact
  9. Acknowledgments
  10. Citation

About The Project

Product Name Screen Shot

Neural networks are an integral part of machine learning. The project provides an easy-to-use, yet efficient implementation that can be used in your projects or for teaching/learning purposes.

The library is written in pure-python with some optimizations using numpy, opt_einsum, and numba when using CPU and cupy for CUDA support.

The goal was to create a framework that is efficient yet easy to understand, so that everyone can see and learn about what goes inside a neural network. After all, the project did spawn from a semester project on CP_IV: Machine Learning course at the University of Jena, Germany.

(back to top)

Built With

(back to top)

Getting Started

To get a local copy up and running follow these simple example steps.

Prerequisites

You need to have python3 installed along with pip.

Installation

There are many ways to install crysx_nn

  1. Install the release (stable) version from PyPi
    pip install crysx_nn
  2. Install the latest development version, by cloning the git repo and installing it. This requires you to have git installed.
    git clone https://github.com/manassharma07/crysx_nn.git
    cd crysx_nn
    pip install .
  3. Install the latest development version without git.
    pip install --upgrade https://github.com/manassharma07/crysx_nn/tarball/main

Check if the installation was successful by running python shell and trying to import the package

python3
>> import crysx_nn >>> crysx_nn.__version__ '0.1.0' >>> ">
Python 3.7.11 (default, Jul 27 2021, 07:03:16) 
[Clang 10.0.0 ] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import crysx_nn
>>> crysx_nn.__version__
'0.1.0'
>>> 

Finally download the example script (here) for simulating logic gates like AND, XOR, NAND, and OR, and try running it

python Simluating_logic_gates.py

(back to top)

Usage

The most important thing for using this library properly is to use 2D NumPy arrays for defining the inputs and exoected outputs (targets) for a network. 1D arrays for inputs and targets are not supported and will result in an error.

For example, let us try to simulate the logic gate AND. The AND gate takes two input bits and returns a single input bit. The bits can take a value of either 0 or 1. The AND gate returns 1 only if both the inputs are 1, otherwise it returns 0.

The truth table of the AND gate is as follows

x1 x2 output
0 0 0
0 1 0
1 0 0
1 1 1

The four possible set of inputs are

inputs = np.array([[0.,0.,1.,1.],[0.,1.,0.,1.]]).T.astype('float32')
print(inputs)
print(inputs.dtype) 

Output:

[[0. 0.]
 [0. 1.]
 [1. 0.]
 [1. 1.]]
float32

Similarly, set the corresponding four possible outputs as a 2D numpy array

# AND outputs
outputAND = np.array([0.,0.,0.,1.]) # 1D array
outputAND = np.asarray([outputAND]).T # 2D array
print('AND outputs\n', outputAND)

Output:

AND outputs
 [[0.]
 [0.]
 [0.]
 [1.]]

Next, we need to set some parameters of our Neural network

nInputs = 2 # No. of nodes in the input layer
neurons_per_layer = [3,1] # Neurons per layer (excluding the input layer)
activation_func_names = ['Sigmoid', 'Sigmoid']
nLayers = len(neurons_per_layer)
eeta = 0.5 # Learning rate
nEpochs=10**4 # For stochastic gradient descent
batchSize = 4 # No. of input samples to process at a time for optimization

For a better understanding, let us visualize it.

visualize(nInputs, neurons_per_layer, activation_func_names)

Output:

Now let us initialize the weights and biases. Weights and biases are provided as lists of 2D and 1D NumPy arrays, respectively (1 Numpy array for each layer). In our case, we have 2 layers (1 hidden+ 1 output), therefore, the list of Weights and Biases will have 2 NumPy arrays each.

# Initial guesses for weights
w1 = 0.30
w2 = 0.55
w3 = 0.20
w4 = 0.45
w5 = 0.50
w6 = 0.35
w7 = 0.15
w8 = 0.40
w9 = 0.25

# Initial guesses for biases
b1 = 0.60
b2 = 0.05

# need to use a list instead of a numpy array, since the 
#weight matrices at each layer are not of the same dimensions
weights = [] 
# Weights for layer 1 --> 2
weights.append(np.array([[w1,w4],[w2, w5], [w3, w6]]))
# Weights for layer 2 --> 3
weights.append(np.array([[w7, w8, w9]]))
# List of biases at each layer
biases = []
biases.append(np.array([b1,b1,b1]))
biases.append(np.array([b2]))

weightsOriginal = weights
biasesOriginal = biases

print('Weights matrices: ',weights)
print('Biases: ',biases)

Output:

Weights matrices:  [array([[0.3 , 0.45],
       [0.55, 0.5 ],
       [0.2 , 0.35]]), array([[0.15, 0.4 , 0.25]])]
Biases:  [array([0.6, 0.6, 0.6]), array([0.05])]

Finally it is time to train our neural network. We will use mean squared error (MSE) loss function as the metric of performance. Currently, only stochastic gradient descent is supported.

# Run optimization
optWeights, optBiases, errorPlot = nn_optimize_fast(inputs, outputAND, activation_func_names, nLayers, nEpochs=nEpochs, batchSize=batchSize, eeta=eeta, weights=weightsOriginal, biases=biasesOriginal, errorFunc=MSE_loss, gradErrorFunc=MSE_loss_grad,miniterEpoch=1,batchProgressBar=False,miniterBatch=100)

The function nn_optimize_fast returns the optimized weights and biases, as well as the error at each epoch of the optimization.

We can then plot the training loss at each epoch

# Plot the error vs epochs
plt.plot(errorPlot)
plt.yscale('log')
plt.show()

Output: For more examples, please refer to the Examples Section

CrysX-NN (crysx_nn) also provides CUDA support by using cupy versions of all the features ike activation functions, loss functions, neural network calculations, etc. Note: For small networks the Cupy versions may actually be slower than CPU versions. But the benefit becomes evident as you go beyond 1.5 Million parameters.

(back to top)

Features

  • Efficient implementations of activation functions and their gradients
    • Sigmoid, Sigmoid_grad
    • ReLU, ReLU_grad
    • Softmax, Softmax_grad
    • Softplus, Sofplus_grad
    • Tanh, Tanh_grad
    • Tanh_offset, Tanh_offset_grad
    • Identity, Identity_grad
  • Efficient implementations of loss functions and their gradients
    • Mean squared error
    • Binary cross entropy
  • Neural network optimization using
    • Stochastic Gradient Descent
  • Support for batched inputs, i.e., supplying a matrix of inputs where the collumns correspond to features and rows to the samples
  • Support for GPU through Cupy pip install cupy-cuda102 (Tested with CUDA 10.2)
  • JIT compiled functions when possible for efficiency

(back to top)

Roadmap

  • Weights and biases initialization
  • More activation functions
    • Identity, LeakyReLU, Tanh, etc.
  • More loss functions
    • categorical cross entropy, and others
  • Optimization algorithms apart from Stochastic Gradient Descent, like ADAM, RMSprop, etc.
  • Implement regularizers
  • Batch normalization
  • Dropout
  • Early stopping
  • A predict function that returns the output of the last layer and the loss/accuracy
  • Some metric functions, although there is no harm in using sklearn for that

See the open issues for a full list of proposed features (and known issues).

(back to top)

Contributing

Contributions are what make the open source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

If you have a suggestion that would make this better, please fork the repo and create a pull request. You can also simply open an issue with the tag "enhancement". Don't forget to give the project a star! Thanks again!

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

(back to top)

License

Distributed under the MIT License. See LICENSE.txt for more information.

(back to top)

Contact

Manas Sharma - @manassharma07 - [email protected]

Project Link: https://github.com/manassharma07/crysx_nn

Project Documentation: https://bragitoff.com

Blog: https://bragitoff.com

(back to top)

Acknowledgments

(back to top)

Citation

If you use this library and would like to cite it, you can use:

 M. Sharma, "CrysX-NN: Neural Network libray", 2021. [Online]. Available: https://github.com/manassharma07/crysx_nn. [Accessed: DD- Month- 20YY].

or:

@Misc{,
  author = {Manas Sharma},
  title  = {CrysX-NN: Neural Network libray},
  month  = december,
  year   = {2021},
  note   = {Online; accessed 
   
    },
  url    = {https://github.com/manassharma07/crysx_nn},
}

   

(back to top)

You might also like...
Tensors and Dynamic neural networks in Python with strong GPU acceleration
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

Tensors and Dynamic neural networks in Python with strong GPU acceleration
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

CPU inference engine that delivers unprecedented performance for sparse models
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory bound workloads. It is focused on model deployment and scaling machine learning pipelines, fitting seamlessly into your existing deployments as an inference backend.

Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

TorchPQ is a python library for Approximate Nearest Neighbor Search (ANNS) and Maximum Inner Product Search (MIPS) on GPU using Product Quantization (PQ) algorithm. [ICLR 2021]
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

Comments
  • NAN loss or loss gradient when using Binary Cross Entropy or Categorical Cross Entropy sometimes

    NAN loss or loss gradient when using Binary Cross Entropy or Categorical Cross Entropy sometimes

    This is a strange bug, where using a batch_size like 32 or smaller results in nan values in the gradient of loss calculations. But the bug is not there when using a larger batch size like 60-200.

    The bug was observed when training on MNIST dataset.

    Using ReLU (Hidden, size=256) and Softmax (Output, size=10) activation layers.

    bug 
    opened by manassharma07 2
  • Reduce the number of parameters required for `nn_optimize` function

    Reduce the number of parameters required for `nn_optimize` function

    Add some defaults to parameters, it could even be None and then if the value of a parameters remains None, i.e., the user didn't provide them, then use our default values.

    For example,

    • [ ] for batchSize we can use: min(32,nSamples)

    • [ ] for weights and biases we can use an initialisation function.

    enhancement 
    opened by manassharma07 2
Releases(v_0.1.7)
  • v_0.1.7(Jan 16, 2022)

    FInalized the example for MNIST and MNIST_Plus.

    Added the ability to calculate accuracy during training as well as during prediction.

    Added confusion matrix calculation and visualization functions in utils.py.

    Source code(tar.gz)
    Source code(zip)
  • v_0.1.6(Jan 2, 2022)

    1. Both forward feed and back propagation are now significantly faster, for both NumPy and Cupy versions.
    2. Furthermore, several more activation and loss functions are also available now.
    Source code(tar.gz)
    Source code(zip)
  • v_0.1.5(Dec 27, 2021)

    Support for CUDA is here via Cupy.

    Slower than CPU for smaller networks but the benefits are very evident for larger networks with more than 1.5 Million parameters.

    Tested on

    • XPS i7 11800H + 3050 Ti,
    • Google Colab K80
    • Kaggle
    Source code(tar.gz)
    Source code(zip)
  • v_0.1.2(Dec 25, 2021)

  • v_0.1.1(Dec 25, 2021)

  • v_0.0.1(Dec 25, 2021)

Owner
Manas Sharma
Physicist
Manas Sharma
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Layer 7 DDoS Panel with Cloudflare Bypass ( UAM, CAPTCHA, BFM, etc.. )

Blood Deluxe DDoS DDoS Attack Panel includes CloudFlare Bypass (UAM, CAPTCHA, BFM, etc..)(It works intermittently. Working on it) Don't attack any web

272 Nov 01, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022