Make a surveillance camera from your raspberry pi!

Overview

rpi-surveillance

Make a surveillance camera from your Raspberry Pi 4!

The surveillance is built as following: the camera records 10 seconds video and if a motion was detected - sends the video to telegram channel.

The timestamp is printed on videos, so it is better to set the correct time on your Raspberry Pi.

The motion detection works in the following way: the camera’s H.264 encoder calculates motion vector estimates while generating compressed video. Using these vectors we threshold them by --magnitude-th argument. If more than --vectors-quorum vectors thresholded - mark current frame as containing motion. If there are more than --detection-frames consecutive frames with motion - motion detected.

Tested on Raspberry Pi 4 (4 RAM) + NoIR Camera V2.

Installation

Install package

Install Python 3 requirements:

pip3 install --user -r requirements.txt

Install provided .deb package:

sudo dpkg -i <path/to/downloaded/rpi-surveillance.deb>
sudo apt install -f

Note: the installation supposes that you already enabled camera module on your Raspberry Pi.

Create telegram bot and chat

  1. Write to @BotFather in telegram and create a bot:
/start
/newbot
<name of your bot>
<username of your bot>_bot

You will get the TOKEN. Save it for future use.

  1. Create a private channel where you will receive video sequences with motion.
  2. Add created bot to the channel (rerquires only "post messages" permission).
  3. Send message test to the channel.
  4. Run /usr/lib/rpi-surveillance/get_channel_id to get the CHANNEL_ID. Save it for future use.

Usage

To launch surveillance just run rpi-surveillance with your TOKEN and CHANNEL_ID, for example:

rpi-surveillance --token 1259140266:WAaqkMycra87ECzRZwa6Z_8T9KB4N-8OPI --channel-id -1003209177928

You can set various parameters of the surveillance:

usage: rpi-surveillance [-h] [--config CONFIG] --token TOKEN --channel-id
                        CHANNEL_ID [--temp-dir TEMP_DIR] [--log-file LOG_FILE]
                        [--resolution {640x480,1280x720,1920x1080}]
                        [--fps {25,30,60}] [--rotation {0,90,180,270}]
                        [--duration DURATION] [--magnitude-th MAGNITUDE_TH]
                        [--vectors-quorum VECTORS_QUORUM]
                        [--detection-frames DETECTION_FRAMES]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Path to config file.
  --token TOKEN         Token for your telegram bot.
  --channel-id CHANNEL_ID
                        Telegram channel ID. If you don't have it please, send
                        a message to your channel and run /usr/lib/rpi-
                        surveillance/get_channel_id with your token.
  --temp-dir TEMP_DIR   Path to temporary directory for video saving before
                        sending to channel. Don't change it if you don't know
                        what you're doing.
  --log-file LOG_FILE   Path to log file for logging.
  --resolution {640x480,1280x720,1920x1080}
                        Camera resolution. Default - 640x480.
  --fps {25,30,60}      Frames per second. Default - 25.
  --rotation {0,90,180,270}
                        Frame rotation. Default - 0.
  --duration DURATION   Duration of videos in seconds. Default - 10.
  --magnitude-th MAGNITUDE_TH
                        Magnitude threshold for motion detection (lower - more
                        sensitive). Defaults: for 640x480 - 15, for 1280x720 -
                        40, for 1920x1080 - 65.
  --vectors-quorum VECTORS_QUORUM
                        Vectors quorum for motion detection (lower - more
                        sensitive). Defaults: for 640x480 - 10, for 1280x720 -
                        20, for 1920x1080 - 40.
  --detection-frames DETECTION_FRAMES
                        The number of consecutive frames with detected motion
                        to send an alert.

Build

Build was done using dpkg-buildpackage.

You might also like...
Make your master artistic punk avatar through machine learning world famous paintings.
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

 Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

Releases(v2.2.2)
Owner
Vladyslav
Machine learning and computer vision developer.
Vladyslav
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023