Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Overview

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Introduction

image

This is the official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022). We evaluate our methods on three datasets, DRIVE, CHASE_DB1 and STARE.

Datesets

You can download the three datasets from Google drive.
Of course, you can download the dataset from DRIVE, CHASE_DB1 and STARE respectively.

Quick start

Requirement

  1. Refer to Pytorch to install Pytorch >= 1.1.
  2. pip install -r requirements.txt

Config file

DATASET: "DRIVE"

TRAIN_DATA_PATH: ".../training/images" # modify it to your own path
TRAIN_LABEL_PATH: ".../training/1st_manual"


TEST_DATA_PATH: ".../test/images"
TEST_PRED_PATH: "results/test/DRIVE/prediction"
TEST_LABEL_PATH: ".../test/label/1st_manual"

# view
#VAL_PICTURE_PATH: "/gdata1/limx/mx/dataset/Drive19/visualization"
#VIEW_VAL_PATH: "results/val_view"
#VIEW_TRAIN_PATH: "results/train_view"

MODEL_PATH: "results/test/DRIVE/model"
LOG_PATH: "results/test/DRIVE/logging.txt"

# train
LEARNING_RATE: 0.005
BATCH_SIZE: 5
EPOCH: 6000
CHECK_BATCH: 50
multi_scale: [0.3]
INPUT_CHANNEL: 3
MAX_AFFINITY: 5
RCE_WEIGHT: 1
RCE_RATIO: 10

# inference
MODEL_NUMBER: "epoch_2750_f1_0.8261"
# load breakpoint
IS_BREAKPOINT: False
BREAKPOINT: ""


Please modify TRAIN_DATA_PATH, TRAIN_LABEL_PATH, TEST_DATA_PATH and TEST_LABEL_PATH.

Training

Please specify the configuration file.
For example, you can run .sh file to train the specific dataset.

cd rootdir
sh pbs/DRIVE_RUN.sh

After finishing the training stage, you will obtain the /results/test/DRIVE/logging.txt. The logging.txt file can log the metrics, like model number, f1, auc, acc, specificity, precision, sensitivity.

Testing

Please select the best model in loggging.txt and modify the MODEL_NUMBER in configuration file.

cd rootdir
python inference.py --lib/DRIVE.yaml 

Evaluation

To evalutate the results offline bewteen cfg['TEST_PRED_PATH'] and cfg['TEST_LABEL_PATH']. Your can run the code like it.

cd rootdir
python eval.py --lib/DRIVE.yaml 
Owner
anonymous
anonymous
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023