DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

Overview

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng, Wenjun Zhang

''Learn a digraph with matrix-valued edge weight for multi-agent perception.''

News

[2021-11] Our paper is availale on arxiv.

[2021-10] Our dataset V2X-Sim 1.0 is availale here.

[2021-09] 🔥 DiscoNet is accepted at NeurIPS 2021.

Abstract

To promote better performance-bandwidth trade-off for multi-agent perception, we propose a novel distilled collaboration graph (DiscoGraph) to model trainable, pose-aware, and adaptive collaboration among agents. Our key novelties lie in two aspects. First, we propose a teacher-student framework to train DiscoGraph via knowledge distillation. The teacher model employs an early collaboration with holistic-view inputs; the student model is based on intermediate collaboration with single-view inputs. Our framework trains DiscoGraph by constraining post-collaboration feature maps in the student model to match the correspondences in the teacher model. Second, we propose a matrix-valued edge weight in DiscoGraph. In such a matrix, each element reflects the inter-agent attention at a specific spatial region, allowing an agent to adaptively highlight the informative regions. During inference, we only need to use the student model named as the distilled collaboration network (DiscoNet). Attributed to the teacher-student framework, multiple agents with the shared DiscoNet could collaboratively approach the performance of a hypothetical teacher model with a holistic view. Our approach is validated on V2X-Sim 1.0, a large-scale multi-agent perception dataset that we synthesized using CARLA and SUMO co-simulation. Our quantitative and qualitative experiments in multi-agent 3D object detection show that DiscoNet could not only achieve a better performance-bandwidth trade-off than the state-of-the-art collaborative perception methods, but also bring more straightforward design rationale. Our code is available on https://github.com/ai4ce/DiscoNet.

Installation

Requirements

  • Linux (tested on Ubuntu 20.04)
  • Python 3.7
  • PyTorch 1.8.0
  • CUDA 11.2

Create Anaconda Environment

conda env create -f disco.yaml
conda activate disco

Dataset Preparation

Please download the training/val set V2X-Sim-1.0-trainval.

NOTICE: The training/val data generation script is currently not avaliable, you can either use the raw data on V2X-Sim 1.0 or the provided training/val set in your experiments. Please send us an access request with your affiliation and role, and we will grant the access.

Training Commands

python train_codet.py [--data PATH_TO_DATA] [--bound BOUND] [--com COM]
               [--batch BATCH] [--nepoch NEPOCH] [--lr LEARNING_RATE] 
               [--kd_flag KD_FLAG] [--resume_teacher PATH_TO_TRACHER_MODEL]
--bound BOUND       
                    Input data to the collaborative perception model. Options: "lowerbound" for 
                    no-collaboration or intermediate-collaboration, "upperbound" for early collaboration.
--com COM   
                    Intermediate collaboration strategy. Options: "disco" for our DiscoNet,
                    "v2v/when2com//sum/mean/max/cat/agent" for other methods, '' for early or no collaboration.
--data PATH_TO_DATA         
                    Set as YOUR_PATH_TO_DATASET/V2X-Sim-1.0-trainval/train
--kd_flag FLAG
                    Whether to use knowledge distillation. 1 for true and 0 for false.
--resume_teacher PATH_TO_TRACHER_MODEL 
                    The pretrained early-collaboration-based teacher model.

Evaluation Commands

python test_codet.py [--data PATH_TO_DATA] [--bound BOUND] [--com COM] [--resume PATH_TO_YOUR_MODEL]
--bound BOUND       
                    Input data to the collaborative perception model. Options: "lowerbound" for 
                    no-collaboration or intermediate-collaboration, "upperbound" for early collaboration.
--com COM   
                    Intermediate collaboration strategy. Options: "disco" for our DiscoNet,
                    "v2v/when2com//sum/mean/max/cat/agent" for other methods, '' for early or no collaboration.
--data PATH_TO_DATA         
                    Set as YOUR_PATH_TO_DATASET/V2X-Sim-1.0-trainval/test
--resume PATH_TO_YOUR_MODEL 
                    The trained model for evaluation.

The teacher model can be downloaded here, and our DiscoNet model can can be downloaded here.

Acknowledgment

This project is not possible without the following great codebases.

Citation

If you find V2X-Sim 1.0 or DiscoNet useful in your research, please cite our paper.

@InProceedings{Li_2021_NeurIPS,
    title = {Learning Distilled Collaboration Graph for Multi-Agent Perception},
    author = {Li, Yiming and Ren, Shunli and Wu, Pengxiang and Chen, Siheng and Feng, Chen and Zhang, Wenjun},
    booktitle = {Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021)},
    year = {2021}
}
Owner
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds

PCAM: Product of Cross-Attention Matrices for Rigid Registration of Point Clouds PCAM: Product of Cross-Attention Matrices for Rigid Registration of P

valeo.ai 24 May 31, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022