DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

Overview

DanceTrack

DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion.

DanceTrack provides box and identity annotations.

DanceTrack contains 100 videos, 40 for training(annotations public), 25 for validation(annotations public) and 35 for testing(annotations unpublic). For evaluating on test set, please see CodaLab.


Paper

DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion

Dataset

Download the dataset from Google Drive or Baidu Drive (code:awew).

Organize as follows:

{DanceTrack ROOT}
|-- dancetrack
|   |-- train
|   |   |-- dancetrack0001
|   |   |   |-- img1
|   |   |   |   |-- 00000001.jpg
|   |   |   |   |-- ...
|   |   |   |-- gt
|   |   |   |   |-- gt.txt            
|   |   |   |-- seqinfo.ini
|   |   |-- ...
|   |-- val
|   |   |-- ...
|   |-- test
|   |   |-- ...
|   |-- train_seqmap.txt
|   |-- val_seqmap.txt
|   |-- test_seqmap.txt
|-- TrackEval
|-- tools
|-- ...

We align our dataset annotations with MOT, so each line in gt.txt contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, 1, 1, 1

Evaluation

We use ByteTrack as an example of using DanceTrack. For training details, please see instruction. We provide the trained models in Google Drive or or Baidu Drive (code:awew).

To do evaluation with our provided tookit, we organize the results of validation set as follows:

{DanceTrack ROOT}
|-- val
|   |-- TRACKER_NAME
|   |   |-- dancetrack000x.txt
|   |   |-- ...
|   |-- ...

where dancetrack000x.txt is the output file of the video episode dancetrack000x, each line of which contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, -1, -1, -1

Then, simply run the evalution code:

python3 TrackEval/scripts/run_mot_challenge.py --SPLIT_TO_EVAL val  --METRICS HOTA CLEAR Identity  --GT_FOLDER dancetrack/val --SEQMAP_FILE dancetrack/val_seqmap.txt --SKIP_SPLIT_FOL True   --TRACKERS_TO_EVAL '' --TRACKER_SUB_FOLDER ''  --USE_PARALLEL True --NUM_PARALLEL_CORES 8 --PLOT_CURVES False --TRACKERS_FOLDER val/TRACKER_NAME 
Tracker HOTA DetA AssA MOTA IDF1
ByteTrack 47.1 70.5 31.5 88.2 51.9

Besides, we also provide the visualization script. The usage is as follow:

python3 tools/txt2video_dance.py --img_path dancetrack --split val --tracker TRACKER_NAME

Competition

Organize the results of test set as follows:

{DanceTrack ROOT}
|-- test
|   |-- tracker
|   |   |-- dancetrack000x.txt
|   |   |-- ...

Each line of dancetrack000x.txt contains:

<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, -1, -1, -1

Archive tracker folder to tracker.zip and submit to CodaLab. Please note: (1) archive tracker folder, instead of txt files. (2) the folder name must be tracker.

The return will be:

Tracker HOTA DetA AssA MOTA IDF1
tracker 47.7 71.0 32.1 89.6 53.9

For more detailed metrics and metrics on each video, click on download output from scoring step in CodaLab.

Run the visualization code:

python3 tools/txt2video_dance.py --img_path dancetrack --split test --tracker tracker

Joint-Training

We use joint-training with other datasets to predict mask, pose and depth. CenterNet is provided as an example. For details of joint-trainig, please see joint-training instruction. We provide the trained models in Google Drive or Baidu Drive(code:awew).

For mask demo, run

cd CenterNet/src
python3 demo.py ctseg --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_coco_mask.pth --debug 4 --tracking 
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/ctseg/default/debug --video_name dancetrack000x_mask.avi

For pose demo, run

cd CenterNet/src
python3 demo.py multi_pose --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_coco_pose.pth --debug 4 --tracking 
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/multi_pose/default/debug --video_name dancetrack000x_pose.avi

For depth demo, run

cd CenterNet/src
python3 demo.py ddd --demo  ../../dancetrack/val/dancetrack000x/img1 --load_model ../models/dancetrack_kitti_ddd.pth --debug 4 --tracking --test_focal_length 640 --world_size 16 --out_size 128
cd ../..
python3 tools/img2video.py --img_file CenterNet/exp/ddd/default/debug --video_name dancetrack000x_ddd.avi

Agreement

  • The dataset of DanceTrack is available for non-commercial research purposes only.
  • All videos and images of DanceTrack are obtained from the Internet which are not property of HKU, CMU or ByteDance. These three organizations are not responsible for the content nor the meaning of these videos and images.
  • The code of DanceTrack is released under the MIT License.

Acknowledgement

The evaluation metrics and code are from MOT Challenge and TrackEval. The inference code is from ByteTrack. The joint-training code is modified from CenterTrack and CenterNet, where the instance segmentation code is from CenterNet-CondInst. Thanks for their wonderful and pioneering works !

Citation

If you use DanceTrack in your research or wish to refer to the baseline results published here, please use the following BibTeX entry:

@article{peize2021dance,
  title   =  {DanceTrack: Multi-Object Tracking in Uniform Appearance and Diverse Motion},
  author  =  {Peize Sun and Jinkun Cao and Yi Jiang and Zehuan Yuan and Song Bai and Kris Kitani and Ping Luo},
  journal =  {arXiv preprint arXiv:2111.14690},
  year    =  {2021}
}
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
On-device speech-to-index engine powered by deep learning.

On-device speech-to-index engine powered by deep learning.

Picovoice 30 Nov 24, 2022
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022