Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Overview

Enhanced Particle Swarm Optimization (PSO) with Python

GitHub license GitHub issues

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social learning coefficients and maximum velocity of the particle.

Dependencies

  • Numpy
  • matplotlib

Utilities

Once the installation is finished (download or cloning), go the pso folder and follow the below simple guidelines to execute PSO effectively (either write the code in command line or in a python editor).

>>> from pso import PSO

Next, a fitness function (or cost function) is required. I have included four different fitness functions for example purposes namely fitness_1, fitness_2, fitness_3, and fitness_4.

Fitness-1 (Himmelblau's Function)

Minimize: f(x) = (x2 + y - 11)2 + (x + y2 - 7)2

Optimum solution: x = 3 ; y = 2

Fitness-2 (Booth's Function)

Minimize: f(x) = (x + 2y - 7)2 + (2x + y - 5)2

Optimum solution: x = 1 ; y = 3

Fitness-3 (Beale's Function)

Minimize: f(x) = (1.5 - x - xy)2 + (2.25 - x + xy2)2 + (2.625 - x + xy3)2

Optimum solution: x = 3 ; y = 0.5

Fitness-4

Maximize: f(x) = 2xy + 2x - x2 - 2y2

Optimum solution: x = 2 ; y = 1

>>> from fitness import fitness_1, fitness_2, fitness_3, fitness_4

Now, if you want, you can provide an initial position X0 and bound value for all the particles (not mandatory) and optimize (minimize or maximize) the fitness function using PSO:

NOTE: a bool variable min=True (default value) for MINIMIZATION PROBLEM and min=False for MAXIMIZATION PROBLEM

>>> PSO(fitness=fitness_1, X0=[1,1], bound=[(-4,4),(-4,4)]).execute()

You will see the following similar output:

OPTIMUM SOLUTION
  > [3.0000078, 1.9999873]

OPTIMUM FITNESS
  > 0.0

When fitness_4 is used, observe that min=False since it is a Maximization problem.

>>> PSO(fitness=fitness_4, X0=[1,1], bound=[(-4,4),(-4,4)], min=False).execute()

You will see the following similar output:

OPTIMUM SOLUTION
  > [2.0, 1.0]

OPTIMUM FITNESS
  > 2.0

Incase you want to print the fitness value for each iteration, then set verbose=True (here Tmax=50 is the maximum iteration)

>>> PSO(fitness=fitness_2, Tmax=50, verbose=True).execute()

You will see the following similar output:

Iteration:   0  | best global fitness (cost): 18.298822
Iteration:   1  | best global fitness (cost): 1.2203953
Iteration:   2  | best global fitness (cost): 0.8178153
Iteration:   3  | best global fitness (cost): 0.5902262
Iteration:   4  | best global fitness (cost): 0.166928
Iteration:   5  | best global fitness (cost): 0.0926638
Iteration:   6  | best global fitness (cost): 0.0926638
Iteration:   7  | best global fitness (cost): 0.0114517
Iteration:   8  | best global fitness (cost): 0.0114517
Iteration:   9  | best global fitness (cost): 0.0114517
Iteration:   10 | best global fitness (cost): 0.0078867
Iteration:   11 | best global fitness (cost): 0.0078867
Iteration:   12 | best global fitness (cost): 0.0078867
Iteration:   13 | best global fitness (cost): 0.0078867
Iteration:   14 | best global fitness (cost): 0.0069544
Iteration:   15 | best global fitness (cost): 0.0063058
Iteration:   16 | best global fitness (cost): 0.0063058
Iteration:   17 | best global fitness (cost): 0.0011039
Iteration:   18 | best global fitness (cost): 0.0011039
Iteration:   19 | best global fitness (cost): 0.0011039
Iteration:   20 | best global fitness (cost): 0.0011039
Iteration:   21 | best global fitness (cost): 0.0007225
Iteration:   22 | best global fitness (cost): 0.0005875
Iteration:   23 | best global fitness (cost): 0.0001595
Iteration:   24 | best global fitness (cost): 0.0001595
Iteration:   25 | best global fitness (cost): 0.0001595
Iteration:   26 | best global fitness (cost): 0.0001595
Iteration:   27 | best global fitness (cost): 0.0001178
Iteration:   28 | best global fitness (cost): 0.0001178
Iteration:   29 | best global fitness (cost): 0.0001178
Iteration:   30 | best global fitness (cost): 0.0001178
Iteration:   31 | best global fitness (cost): 0.0001178
Iteration:   32 | best global fitness (cost): 0.0001178
Iteration:   33 | best global fitness (cost): 0.0001178
Iteration:   34 | best global fitness (cost): 0.0001178
Iteration:   35 | best global fitness (cost): 0.0001178
Iteration:   36 | best global fitness (cost): 0.0001178
Iteration:   37 | best global fitness (cost): 2.91e-05
Iteration:   38 | best global fitness (cost): 1.12e-05
Iteration:   39 | best global fitness (cost): 1.12e-05
Iteration:   40 | best global fitness (cost): 1.12e-05
Iteration:   41 | best global fitness (cost): 1.12e-05
Iteration:   42 | best global fitness (cost): 1.12e-05
Iteration:   43 | best global fitness (cost): 1.12e-05
Iteration:   44 | best global fitness (cost): 1.12e-05
Iteration:   45 | best global fitness (cost): 1.12e-05
Iteration:   46 | best global fitness (cost): 1.12e-05
Iteration:   47 | best global fitness (cost): 2.4e-06
Iteration:   48 | best global fitness (cost): 2.4e-06
Iteration:   49 | best global fitness (cost): 2.4e-06
Iteration:   50 | best global fitness (cost): 2.4e-06

OPTIMUM SOLUTION
  > [1.0004123, 2.9990281]

OPTIMUM FITNESS
  > 2.4e-06

Now, incase you want to plot the fitness value for each iteration, then set plot=True (here Tmax=50 is the maximum iteration)

>>> PSO(fitness=fitness_2, Tmax=50, plot=True).execute()

You will see the following similar output:

OPTIMUM SOLUTION
  > [1.0028365, 2.9977422]

OPTIMUM FITNESS
  > 1.45e-05

Fitness

Finally, in case you want to use the advanced features as mentioned above (say you want to update the weight inertia parameter w), simply use update_w=True and thats it. Similarly you can use update_c1=True (to update individual cognitive parameter c1), update_c2=True (to update social learning parameter c2), and update_vmax=True (to update maximum limited velocity of the particle vmax)

>>> PSO(fitness=fitness_1, update_w=True, update_c1=True).execute()

References:

[1] Almeida, Bruno & Coppo leite, Victor. (2019). Particle swarm optimization: a powerful technique for solving engineering problems. 10.5772/intechopen.89633.

[2] He, Yan & Ma, Wei & Zhang, Ji. (2016). The parameters selection of pso algorithm influencing on performance of fault diagnosis. matec web of conferences. 63. 02019. 10.1051/matecconf/20166302019.

[3] Clerc, M., and J. Kennedy. The particle swarm — explosion, stability, and convergence in a multidimensional complex space. ieee transactions on evolutionary computation 6, no. 1 (february 2002): 58–73.

[4] Y. H. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in proceedings of the ieee international conferences on evolutionary computation, pp. 69–73, anchorage, alaska, usa, may 1998.

[5] G. Sermpinis, K. Theofilatos, A. Karathanasopoulos, E. F. Georgopoulos, & C. Dunis, Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization, european journal of operational research.

[6] Particle swarm optimization (pso) visually explained (https://towardsdatascience.com/particle-swarm-optimization-visually-explained-46289eeb2e14)

[7] Rajib Kumar Bhattacharjya, Introduction to Particle Swarm Optimization (http://www.iitg.ac.in/rkbc/ce602/ce602/particle%20swarm%20algorithms.pdf)

Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
A PyTorch-centric hybrid classical-quantum machine learning framework

torchquantum A PyTorch-centric hybrid classical-quantum dynamic neural networks framework. News Add a simple example script using quantum gates to do

MIT HAN Lab 400 Jan 02, 2023
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target i

NanYoMy 13 Oct 09, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022