Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Overview

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image

Baowen Zhang, Yangang Wang, Xiaoming Deng*, Yinda Zhang*, Ping Tan, Cuixia Ma and Hongan Wang

Project page       Paper       Supp

prediction example

This repository contains the model of the ICCV'2021 paper "Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image".

We propose a novel deep learning framework to reconstruct 3D hand poses and shapes of two interacting hands from a single color image. Previous methods designed for single hand cannot be easily applied for the two hand scenario because of the heavy inter-hand occlusion and larger solution space. In order to address the occlusion and similar appearance between hands that may confuse the network, we design a hand pose-aware attention module to extract features associated to each individual hand respectively. We then leverage the two hand context presented in interaction and propose a context-aware cascaded refinement that improves the hand pose and shape accuracy of each hand conditioned on the context between interacting hands. Extensive experiments on the main benchmark datasets demonstrate that our method predicts accurate 3D hand pose and shape from single color image, and achieves the state-of-the-art performance.

1.Installation

This code is tested with Cuda 11.1.

Clone this repository.

git clone https://github.com/BaowenZ/Two-Hand-Shape-Pose.git
cd Two-Hand-Shape-Pose

In the following, ${TWO_HAND} refers to Two-Hand-Shape-Pose.

Install dependencies

conda create -n intershape python=3.9
conda activate intershape
pip install --upgrade pip
pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html

2.Download models

Download pre-trained model model.pts and put it into folder model/.

Download the MANO model files from MANO. Unzip mano_v1_2.zip under ${TWO_HAND} and rename the unzipped folder as mano/.

3.Running the code

python test.py --test_folder test_data --model_path model/model.pts

Our model predicts hand meshes from images in test_data/. The estimated meshes are saved as obj files in test_data/.

Citation

Please consider citing the paper if you use this code.

@inproceedings{Zhang2021twohand, 
      title={Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image}, 
      author={Baowen Zhang, Yangang Wang, Xiaoming Deng, Yinda Zhang, Ping Tan, Cuixia Ma and Hongan Wang}, 
      booktitle={International Conference on Computer Vision (ICCV)}, 
      year={2021} 
} 

4. Acknowledgement

We use part of the great code from InterNet and mano layer.

Image samples in test_data/ are from InterHand2.6M.

We thank the authors of InterNet, InterHand2.6M and mano layer for their great work.

Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente OrdΓ³Γ±ez RomΓ‘n, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Balancing Principle for Unsupervised Domain Adaptation

Blancing Principle for Domain Adaptation NeurIPS 2021 Paper Abstract We address the unsolved algorithm design problem of choosing a justified regulari

Marius-Constantin Dinu 4 Dec 15, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Yolov5 + Deep Sort with PyTorch

λ”₯μ†ŒνŠΈ μˆ˜μ •μ€‘ Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021