Autoregressive Models in PyTorch.

Overview

Autoregressive

This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like autoregressive models.

For presentation purposes, the WaveNet-like models are applied to randomized Fourier series (1D) and MNIST (2D). In the figure below, two WaveNet-like models with different training settings make an n-step prediction on a periodic time-series from the validation dataset.

Advanced functions show how to generate MNIST images and how to estimate the MNIST digit class (progressively) p(y=class|x) from observed pixels using a conditional WaveNet p(x|y=class) and Bayes rule. Left: sampled MNIST digits, right: progressive class estimates as more pixels are observed.

Note, this library does not implement (Gated) PixelCNNs, but unrolls images for the purpose of processing in WaveNet architectures. This works surprisingly well.

Features

Currently the following features are implemented

  • WaveNet architecture and training as proposed in (oord2016wavenet)
  • Conditioning support (oord2016wavenet)
  • Fast generation based on (paine2016fast)
  • Fully differentiable n-step unrolling in training (heindl2021autoreg)
  • 2D image generation, completion, classification, and progressive classification support based on MNIST dataset
  • A randomized Fourier dataset

Presentation

A detailed presentation with theoretical background, architectural considerations and experiments can be found below.

The presentation source as well as all generated images are public domain. In case you find them useful, please leave a citation (see References below). All presentation sources can be found in etc/presentation. The presentation is written in markdown using Marp, graph diagrams are created using yEd.

If you spot errors or if case you have suggestions for improvements, please let me know by opening an issue.

Installation

To install run,

pip install https://github.com/cheind/autoregressive.git#egg=autoregressive[dev]

which requires Python 3.9 and a recent PyTorch > 1.9

Usage

The library comes with a set of pre-trained models in models/. The following commands use those models to make various predictions. Many listed commands come with additional parameters; use --help to get additional information.

1D Fourier series

Sample new signals from scratch

python -m autoregressive.scripts.wavenet_signals sample --config "models/fseries_q127/config.yaml" --ckpt "models/fseries_q127/xxxxxx.ckpt" --condition 4 --horizon 1000

The default models conditions on the periodicity of the signal. For the pre-trained model the value range is int: [0..4], corresponding to periods of 5-10secs.


Predict the shape of partially observable curves.

python -m autoregressive.scripts.wavenet_signals predict --config "models/fseries_q127/config.yaml" --ckpt "models/fseries_q127/xxxxxx.ckpt" --horizon 1500 --num_observed 50 --num_trajectories 20 --num_curves 1 --show_confidence true

2D MNIST

To sample from the class-conditional model

python -m autoregressive.scripts.wavenet_mnist sample --config "models/mnist_q2/config.yaml" --ckpt "models/mnist_q2/xxxxxx.ckpt"

Generate images conditioned on the digit class and observed pixels.

python -m autoregressive.scripts.wavenet_mnist predict --config "models/mnist_q2/config.yaml" --ckpt "models/mnist_q2/xxxxxx.ckpt" 

To perform classification

python -m autoregressive.scripts.wavenet_mnist classify --config "models/mnist_q2/config.yaml" --ckpt "models/mnist_q2/xxxxxx.ckpt"

Train

To train / reproduce a model

python -m autoregressive.scripts.train fit --config "models/mnist_q2/config.yaml"

Progress is logged to Tensorboard

tensorboard --logdir lightning_logs

To generate a training configuration file for a specific dataset use

python -m autoregressive.scripts.train fit --data autoregressive.datasets.FSeriesDataModule --print_config > fseries_config.yaml

Test

To run the tests

pytest

References

@misc{heindl2021autoreg, 
  title={Autoregressive Models}, 
  journal={PROFACTOR Journal Club}, 
  author={Heindl, Christoph},
  year={2021},
  howpublished={\url{https://github.com/cheind/autoregressive}}
}

@article{oord2016wavenet,
  title={Wavenet: A generative model for raw audio},
  author={Oord, Aaron van den and Dieleman, Sander and Zen, Heiga and Simonyan, Karen and Vinyals, Oriol and Graves, Alex and Kalchbrenner, Nal and Senior, Andrew and Kavukcuoglu, Koray},
  journal={arXiv preprint arXiv:1609.03499},
  year={2016}
}

@article{paine2016fast,
  title={Fast wavenet generation algorithm},
  author={Paine, Tom Le and Khorrami, Pooya and Chang, Shiyu and Zhang, Yang and Ramachandran, Prajit and Hasegawa-Johnson, Mark A and Huang, Thomas S},
  journal={arXiv preprint arXiv:1611.09482},
  year={2016}
}

@article{oord2016conditional,
  title={Conditional image generation with pixelcnn decoders},
  author={Oord, Aaron van den and Kalchbrenner, Nal and Vinyals, Oriol and Espeholt, Lasse and Graves, Alex and Kavukcuoglu, Koray},
  journal={arXiv preprint arXiv:1606.05328},
  year={2016}
}
Owner
Christoph Heindl
I am a scientist at PROFACTOR/JKU working at the interface between computer vision, robotics and deep learning.
Christoph Heindl
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023