Platform-agnostic AI Framework 🔥

Overview

GitHub last commit (branch) Documentation Status Build Status Downloads Downloads Docker Pulls

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework programming. layer list

🇨🇳 TensorLayerX 是一个跨平台开发框架,可以运行在各类操作系统和AI硬件上,并支持混合框架的开发。支持列表

🇷🇺 TensorLayerX

🇸🇦 TensorLayerX

TensorLayerX

Compare with TensorLayer, TensorLayerX (TLX) is a brand new seperated project for platform-agnostic purpose.

Examples

Quick Start

  • Installation
# install from pypi
pip3 install tensorlayerx 
# install from Github
pip3 install git+https://github.com/tensorlayer/tensorlayerx.git 
# install from OpenI
pip3 install
  • Tutorial

  • Discussion: Slack , [QQ-Group] , [WeChat-Group]

Contact

Citation

If you find TensorLayerX useful for your project, please cite the following papers:

@article{tensorlayer2017,
    author  = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
    journal = {ACM Multimedia},
    title   = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
    url     = {http://tensorlayer.org},
    year    = {2017}
}

@inproceedings{tensorlayer2021,
  title={TensorLayer 3.0: A Deep Learning Library Compatible With Multiple Backends},
  author={Lai, Cheng and Han, Jiarong and Dong, Hao},
  booktitle={2021 IEEE International Conference on Multimedia \& Expo Workshops (ICMEW)},
  pages={1--3},
  year={2021},
  organization={IEEE}
}
Comments
  • load pretrained model from .pth

    load pretrained model from .pth

    I write a model using Pytorch, and save its state_dict() to .pth. Now I want to use tensorlayerx to write it, so other people (using tensorflow etc.) can use this model. My model definition is same in Pytorch and Tensorlayerx, but I can't load pretrained model of .pth in tensorlayerx. Below is my code. (simple model is used here for clarity, the actual model is more complex than this)

    """
    a_torch.py
    """
    import torch
    from torch import nn
    
    class A(nn.Module):
        def __init__(self):
            super(A, self).__init__()
            self.conv = nn.Conv2d(3, 16, kernel_size=1)
            self.bn = nn.BatchNorm2d(16)
            self.relu = nn.ReLU(inplace=True)
        
        def forward(self, x):
            return self.act(self.bn(self.conv(x)))
    
    if __name__ == '__main__':
        a = A()
        torch.save(a.state_dict(), 'a.pth')
    
    """
    a_tlx.py
    """
    import tensorlayerx as tlx
    import torch
    from tensorlayerx import nn
    
    class A(nn.Module):
        def __init__(self):
            super(A, self).__init__()
            self.conv = nn.Conv2d(16, kernel_size=1, data_format='channels_first')
            self.bn = nn.BatchNorm2d(num_features=16, data_format='channels_first')
            self.relu = nn.activation.ReLU()
        
        def forward(self, x):
            return self.act(self.bn(self.conv(x)))
    
    def pth2npz(pth_path):
        temp = torch.load(pth_path)   # type(temp) = OrderedDict
        tlx.files.save_npz_dict(temp.items(), pth_path.split('.')[0] + '.npz')
    
    if __name__ == '__main__':
        a = A()
        pth2npz('a.pth')
        tlx.files.load_and_assign_npz_dict('a.npz', a)
    

    First run a_torch.py, then run a_tlx.py. The error is below.

    Using PyTorch backend.
    Traceback (most recent call last):
      File "test/test_03.py", line 25, in <module>
        tlx.files.load_and_assign_npz_dict('test/a.npz', a)
      File "/home/mchen/anaconda3/envs/kpconv/lib/python3.8/site-packages/tensorlayerx/files/utils.py", line 2208, in load_and_assign_npz_dict
        raise RuntimeError(
    RuntimeError: Weights named 'conv.weight' not found in network. Hint: set argument skip=Ture if you want to skip redundant or mismatch weights
    

    Then I debug and look at the tlx.files.load_and_assign_npz_dict() source code. I find tensorlayerx parameter name is different from PyTorch. This results in key mismatch when loading pre-trained model. In the following two figures, the first is the parameter name of PyTorch and the second is the parameter name of TensorLayerx. 屏幕截图 2022-08-07 202607 屏幕截图 2022-08-07 202555 Now the solution I can think of is to write a key map table, but it is hard for large model. So can you give me a simple solution ? (same model definition in pytorch and tensorlayerx, load pretrained model in .pth) :grin:

    opened by HaoRan-hash 2
  • tlx.nn.Swish()与paddle.nn.Swish()的结果有细微差别

    tlx.nn.Swish()与paddle.nn.Swish()的结果有细微差别

    tlx:

    [-0.16246916, 1.40204561, 0.85213524, ..., 0.85800600, 1.10605156, 1.11549926], [-0.04873780, 0.28885114, 0.15792340, ..., 0.12375022, 0.22599602, 0.53073120], [-0.09840852, 0.40172467, 0.15602632, ..., 0.09853011, 0.29177830, 0.52241892]

    paddle:

    [-0.16246916, 1.40204573, 0.85213524, ..., 0.85800600, 1.10605145, 1.11549926], [-0.04873780, 0.28885114, 0.15792342, ..., 0.12375022, 0.22599602, 0.53073120], [-0.09840852, 0.40172467, 0.15602632, ..., 0.09853011, 0.29177833, 0.52241892]

    opened by moshizhiyin 1
  • add some functions

    add some functions

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • Fix docs

    Fix docs

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • add some functions

    add some functions

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • add paddle backend ops

    add paddle backend ops

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • fix swish and prelu

    fix swish and prelu

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by hanjr92 0
  • Fix requirements oneflow backend

    Fix requirements oneflow backend

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • Oneflow dev

    Oneflow dev

    Description

    oneflow backend:

    backends/ops/oneflow_nn.py
    backends/ops/oneflow_backend.py
    nn/core/core_oneflow.py
    

    tutorials: 6 MarkDown files in /home/user/pyprojects/TensorLayerX/docs/tutorials

    other: Training progressbar using rich bugs fixed

    opened by QuantumLiu 0
  • Add Training Progress Bar

    Add Training Progress Bar

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • Add loss monitoring to training

    Add loss monitoring to training

    Checklist

    • [ ] I've tested that my changes are compatible with the latest version of Tensorflow.
    • [ ] I've read the Contribution Guidelines
    • [ ] I've updated the documentation if necessary.

    Motivation and Context

    Description

    opened by Laicheng0830 0
  • net.set_eval() seems not work well

    net.set_eval() seems not work well

    Issue Description

    When I test my pspnet model, I find if not use "with torch.no_grad()" or "gradient()", the gpu memory will be full after testing several photos. I guess set_eval() function seems to have failed. Or I used the wrong method to test? This is my code, thank you!

    In addition, I found that the batch size will affect the final test results. If net. eval() is not performed in the pytorch, it will cause similar problems. It seems that this is caused by the BatchNorm layer.

        os.environ['TL_BACKEND'] = 'torch'
        tlx.set_device(device='GPU', id=3)
        # ...
        net = models[backend]()
        net.load_weights('test.npz', format='npz_dict', skip=True)
        test_dataset = MyDataset(root_dir="test/")
        test_loader = DataLoader(test_dataset, batch_size=4, shuffle=True)
    
        train_weights = net.trainable_weights
        scheduler = tlx.optimizers.lr.StepDecay(learning_rate=0, step_size=30, gamma=0.5, last_epoch=-1)
        optimizer = tlx.optimizers.Adam(lr=scheduler)
    
        hist = np.zeros((num_classes, num_classes))
        net.set_eval()
        # with torch.no_grad():
        for x, y, y_cls in test_loader:
            _out, _out_cls = net(x)
            seg_loss = tlx.losses.softmax_cross_entropy_with_logits(_out, y)
            cls_loss = tlx.losses.sigmoid_cross_entropy(_out_cls, y_cls)
            _loss = seg_loss + 1 * cls_loss
            # grads = optimizer.gradient(_loss, train_weights)
            # optimizer.apply_gradients(zip(grads, train_weights))
            '''
                compute miou matrix
            '''
            out = tlx.convert_to_numpy(_out)
            y = tlx.convert_to_numpy(y)
            out = np.argmax(out, axis=1)
            for i in range(0, out.shape[0]):
                pred = out[i]
                gt = y[i]
                hist += fast_hist(gt.flatten(), pred.flatten(), num_classes)
                
        # compute miou then print
        mIoUs = per_class_iu(hist)
        for ind_class in range(num_classes):
            print('===>' + name_classes[ind_class] + ':\t' + str(round(mIoUs[ind_class] * 100, 2)))
        print('===> mIoU: ' + str(round(np.nanmean(mIoUs) * 100, 2)))
        print("test loss: {}".format(train_loss))
    
    
    opened by qzhiyue 0
  • tensorlayerx.ops.Pad不支持“channels_first”的data_format,后续会补充“channels_first”的格式吗?

    tensorlayerx.ops.Pad不支持“channels_first”的data_format,后续会补充“channels_first”的格式吗?

    New Issue Checklist

    Issue Description

    [INSERT DESCRIPTION OF THE PROBLEM]

    Reproducible Code

    • Which OS are you using ?
    • Please provide a reproducible code of your issue. Without any reproducible code, you will probably not receive any help.

    [INSERT CODE HERE]

    # ======================================================== #
    ###### tensorlayerx.ops.Pad源码######
    # ======================================================== #
    
    class Pad(object):
    
        def __init__(self, paddings, mode="REFLECT", constant_values=0):
            if mode not in ['CONSTANT', 'REFLECT', 'SYMMETRIC']:
                raise Exception("Unsupported mode: {}".format(mode))
            if mode == 'SYMMETRIC':
                raise NotImplementedError
            self.paddings = paddings
            self.mode = mode.lower()
            self.constant_values = constant_values
    
        def __call__(self, x):
            if len(x.shape) == 3:
                data_format = 'NLC'
                self.paddings = self.correct_paddings(len(x.shape), self.paddings, data_format)
            elif len(x.shape) == 4:
                data_format = 'NHWC'
                self.paddings = self.correct_paddings(len(x.shape), self.paddings, data_format)
            elif len(x.shape) == 5:
                data_format = 'NDHWC'
                self.paddings = self.correct_paddings(len(x.shape), self.paddings, data_format)
            else:
                raise NotImplementedError('Please check the input shape.')
            return pd.nn.functional.pad(x, self.paddings, self.mode, value=self.constant_values, data_format=data_format)
    
        def correct_paddings(self, in_shape, paddings, data_format):
            if in_shape == 3 and data_format == 'NLC':
                correct_output = [paddings[1][0], paddings[1][1]]
            elif in_shape == 4 and data_format == 'NHWC':
                correct_output = [paddings[2][0], paddings[2][1], paddings[1][0], paddings[1][1]]
            elif in_shape == 5 and data_format == 'NDHWC':
                correct_output = [
                    paddings[3][0], paddings[3][1], paddings[2][0], paddings[2][1], paddings[1][0], paddings[1][1]
                ]
            else:
                raise NotImplementedError('Does not support channels first')
            return correct_output
    
    
    opened by zhxiucui 0
  • tenorlayerx.nn没有paddle.nn.InstanceNorm2D对应的算子

    tenorlayerx.nn没有paddle.nn.InstanceNorm2D对应的算子

    paddle.nn.InstanceNorm2D(num_features, epsilon=1e-05, momentum=0.9, weight_attr=None, bias_attr=None, data_format="NCHW", name=None) image 更多见接口文档https://www.paddlepaddle.org.cn/documentation/docs/zh/2.3/api/paddle/nn/InstanceNorm2D_cn.html#instancenorm2d

    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    import tensorlayerx as tlx
    
    opened by zhxiucui 0
  • tensorlayerx没有优化函数的基类,  只能使用tlx.optimizers.paddle_optimizers.Optimizer来判断

    tensorlayerx没有优化函数的基类, 只能使用tlx.optimizers.paddle_optimizers.Optimizer来判断

    New Issue Checklist

    Issue Description

    [INSERT DESCRIPTION OF THE PROBLEM]

    Reproducible Code

    • Which OS are you using ?
    • Please provide a reproducible code of your issue. Without any reproducible code, you will probably not receive any help.

    [INSERT CODE HERE]

    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    # paddle
    import paddle
    x = 13
    print(isinstance(x, paddle.optimizers.Optimizer))
    
    # tensorlayer
    import os
    os.environ['TL_BACKEND'] = 'paddle'
    import tensorlayer as tlx
    x = 13
    print(isinstance(x, tlx.optimizers.paddle_optimizers.Optimizer))
    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    
    opened by zhxiucui 0
  • tensorlayerx.nn.UpSampling2d当data_format=

    tensorlayerx.nn.UpSampling2d当data_format="channels_first"和paddle.nn.Upsample输出结果维度不一致

    New Issue Checklist

    Issue Description

    [INSERT DESCRIPTION OF THE PROBLEM]

    Reproducible Code

    • Which OS are you using ?
    • Please provide a reproducible code of your issue. Without any reproducible code, you will probably not receive any help.

    [INSERT CODE HERE]

    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    import os
    import paddle
    os.environ['TL_BACKEND'] = 'paddle'
    import tensorlayerx as tlx
    
    tlx_ni = tlx.nn.Input([4, 32, 50, 50], name='input')
    tlx_out = tlx.nn.UpSampling2d(scale=(2, 2), data_format="channels_first")(tlx_ni)
    print(f"tlx_out.shape={tlx_out.shape}")
    
    pd_ni = paddle.rand([4, 32, 50, 50], dtype="float32")
    pd_out = paddle.nn.Upsample(scale_factor=2, data_format="NCHW")(pd_ni)
    print(f"pd_out.shape={pd_out.shape}")
    
    # ======================================================== #
    ###### THIS CODE IS AN EXAMPLE, REPLACE WITH YOUR OWN ######
    # ======================================================== #
    

    输出结果 tlx_out.shape=[4, 32, 64, 100] pd_out.shape=[4, 32, 100, 100]

    opened by zhxiucui 0
Releases(v0.5.7)
  • v0.5.7(Sep 19, 2022)

    TensorLayerX 0.5.7 is a maintenance release . In this release , we have the following changes.

    • Fix PyTorch back-end depthtospace operator.
    • Fix where the training API could not accept multiple inputs.
    • Add the example of importing trained models from PyTorch or Paddle to TensorLayerX.
    • Add roll and logsoftmax operators.
    • Update the model trained by any backend of TensorLayerX can be imported to any backend of TensorLayerX.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.6(Jul 15, 2022)

    TensorLayerX 0.5.6 is a maintenance release . In this release , we have the following changes .

    • Fixed Sequential mode ONNX node collection .
    • Fixed bug with RNN LSTM GRU training parameters .
    • Fixed the inconsistency of different backends parameters of DepthWiseConv2d.
    • Fixed the bug of saving parameters to npz.
    • Updated padding layers.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.5(Jun 27, 2022)

    TensorLayerX 0.5.5 is a maintenance release.In this release, we have the following changes.

    • Added get_device, to_device operator.
    • Changed the parameter name of the average pooling layer to (AvgPool1d, GlobalAvgPool1d, AdaptiveAvgPool1d, AvgPool2d, GlobalAvgPool2d Etc.)
    • Fixed LSTM RNN GRU.
    • Fixed a bug where ParameterList and ParameterDict training parameters on the TensorFlow backend were not collected.
    • Fixed support for MindSpore1.7.0 version.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.4(May 31, 2022)

    TensorLayerX 0.5.4 is a maintenance release.In this release, we have the following changes.

    • Added documentation for metric functions
    • Add Einsum
    • Fixed PyTorch back-end optimizers
    • Fixed preprocessing when activation functions are used as parameters

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.3(May 16, 2022)

    TensorLayerX 0.5.3 is a maintenance release.In this release, we have the following changes.

    • Added kernel_size, stride, dilation parameters can be int or tuple.
    • Added padding mode can be int, tuple, or str. str is "SAME" or "VALID".
    • Added TensorLayerX model topology for ONNX model export, can generate topology by model.build_graph(inputs).
    • Fix the problem of slow training speed due to MindSpore optimizer wrapping.

    Feel free to use it and make suggestions!

    Source code(tar.gz)
    Source code(zip)
  • v0.5.1(Apr 14, 2022)

  • v0.5.0(Mar 7, 2022)

    TensorLayerX 0.5.0 is a maintenance release,it supports TensorFlow、MindSpore and PaddlePaddle backends, and supports some PyTorch operator backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend. Feel free to use it and make suggestions.

    Source code(tar.gz)
    Source code(zip)
Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Only valid pull requests will be allowed. Use python only and readme changes will not be accepted.

❌ This repo is excluded from hacktoberfest This repo is for python beginners and contains lot of beginner python projects for practice. You can also s

Prajjwal Pathak 50 Dec 28, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022