Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Overview

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval

This repo provides personal implementation of paper Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval in a simplified way. The code is refered to official version of ANCE.

Environment

'transformers==2.3.0' 
'pytrec-eval'
'faiss-cpu'
'wget'
'python==3.6.*'

Data Download & Preprocessing

To download all the needed data, run:

bash commands/data_download.sh 

Data Preprocessing

The command to preprocess passage and document data is listed below:

python data/msmarco_data.py 
--data_dir $raw_data_dir \
--out_data_dir $preprocessed_data_dir \ 
--model_type {use rdot_nll for ANCE FirstP, rdot_nll_multi_chunk for ANCE MaxP} \ 
--model_name_or_path roberta-base \ 
--max_seq_length {use 512 for ANCE FirstP, 2048 for ANCE MaxP} \ 
--data_type {use 1 for passage, 0 for document}

The data preprocessing command is included as the first step in the training command file commands/run_train.sh

Warmup for Training

ANCE training starts from a pretrained BM25 warmup checkpoint. The command with our used parameters to train this warmup checkpoint is in commands/run_train_warmup.py and is shown below:

    python3 -m torch.distributed.launch --nproc_per_node=1 ../drivers/run_warmup.py \
    --train_model_type rdot_nll \
    --model_name_or_path roberta-base \
    --task_name MSMarco \
    --do_train \
    --evaluate_during_training \
    --data_dir ${location of your raw data}  
    --max_seq_length 128 
    --per_gpu_eval_batch_size=256 \
    --per_gpu_train_batch_size=32 \
    --learning_rate 2e-4  \
    --logging_steps 100   \
    --num_train_epochs 2.0  \
    --output_dir ${location for checkpoint saving} \
    --warmup_steps 1000  \
    --overwrite_output_dir \
    --save_steps 30000 \
    --gradient_accumulation_steps 1 \
    --expected_train_size 35000000 \
    --logging_steps_per_eval 1 \
    --fp16 \
    --optimizer lamb \
    --log_dir ~/tensorboard/${DLWS_JOB_ID}/logs/OSpass

Training

To train the model(s) in the paper, you need to start two commands in the following order:

  1. run commands/run_train.sh which does three things in a sequence:

    a. Data preprocessing: this is explained in the previous data preprocessing section. This step will check if the preprocess data folder exists, and will be skipped if the checking is positive.

    b. Initial ANN data generation: this step will use the pretrained BM25 warmup checkpoint to generate the initial training data. The command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann_data_gen.py 
     --training_dir {# checkpoint location, not used for initial data generation} \ 
     --init_model_dir {pretrained BM25 warmup checkpoint location} \ 
     --model_type rdot_nll \
     --output_dir $model_ann_data_dir \
     --cache_dir $model_ann_data_dir_cache \
     --data_dir $preprocessed_data_dir \
     --max_seq_length 512 \
     --per_gpu_eval_batch_size 16 \
     --topk_training {top k candidates for ANN search(ie:200)} \ 
     --negative_sample {negative samples per query(20)} \ 
     --end_output_num 0 # only set as 0 for initial data generation, do not set this otherwise
    

    c. Training: ANCE training with the most recently generated ANN data, the command is as follow:

     python -m torch.distributed.launch --nproc_per_node=$gpu_no ../drivers/run_ann.py 
     --model_type rdot_nll \
     --model_name_or_path $pretrained_checkpoint_dir \
     --task_name MSMarco \
     --triplet {# default = False, action="store_true", help="Whether to run training}\ 
     --data_dir $preprocessed_data_dir \
     --ann_dir {location of the ANN generated training data} \ 
     --max_seq_length 512 \
     --per_gpu_train_batch_size=8 \
     --gradient_accumulation_steps 2 \
     --learning_rate 1e-6 \
     --output_dir $model_dir \
     --warmup_steps 5000 \
     --logging_steps 100 \
     --save_steps 10000 \
     --optimizer lamb 
    
  2. Once training starts, start another job in parallel to fetch the latest checkpoint from the ongoing training and update the training data. To do that, run

     bash commands/run_ann_data_gen.sh
    

    The command is similar to the initial ANN data generation command explained previously

Inference

The command for inferencing query and passage/doc embeddings is the same as that for Initial ANN data generation described above as the first step in ANN data generation is inference. However you need to add --inference to the command to have the program to stop after the initial inference step. commands/run_inference.sh provides a sample command.

Evaluation

The evaluation is done through "Calculate Metrics.ipynb". This notebook calculates full ranking and reranking metrics used in the paper including NDCG, MRR, hole rate, recall for passage/document, dev/eval set specified by user. In order to run it, you need to define the following parameters at the beginning of the Jupyter notebook.

    checkpoint_path = {location for dumpped query and passage/document embeddings which is output_dir from run_ann_data_gen.py}
    checkpoint =  {embedding from which checkpoint(ie: 200000)}
    data_type =  {0 for document, 1 for passage}
    test_set =  {0 for MSMARCO dev_set, 1 for TREC eval_set}
    raw_data_dir = 
    processed_data_dir = 

ANCE VS DPR on OpenQA Benchmarks

We also evaluate ANCE on the OpenQA benchmark used in a parallel work (DPR). At the time of our experiment, only the pre-processed NQ and TriviaQA data are released. Our experiments use the two released tasks and inherit DPR retriever evaluation. The evaluation uses the [email protected]/100 which is whether the Top-20/100 retrieved passages include the answer. We explain the steps to reproduce our results on OpenQA Benchmarks in this section.

Download data

commands/data_download.sh takes care of this step.

ANN data generation & ANCE training

Following the same training philosophy discussed before, the ann data generation and ANCE training for OpenQA require two parallel jobs.

  1. We need to preprocess data and generate an initial training set for ANCE to start training. The command for that is provided in:
commands/run_ann_data_gen_dpr.sh

We keep this data generation job running after it creates an initial training set as it will later keep generating training data with newest checkpoints from the training process.

  1. After an initial training set is generated, we start an ANCE training job with commands provided in:
commands/run_train_dpr.sh

During training, the evaluation metrics will be printed to tensorboards each time it receives new training data. Alternatively, you could check the metrics in the dumped file "ann_ndcg_#" in the directory specified by "model_ann_data_dir" in commands/run_ann_data_gen_dpr.sh each time new training data is generated.

Results

The run_train.sh and run_ann_data_gen.sh files contain the command with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document ANCE(MaxP) Our model achieves the following performance on MSMARCO dev set and TREC eval set :

MSMARCO Dev Passage Retrieval [email protected] [email protected] Steps
ANCE(FirstP) 0.330 0.959 600K
ANCE(MaxP) - - -
TREC DL Passage [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.677 0.648 600K
ANCE(MaxP) - - -
TREC DL Document [email protected] Rerank Retrieval Steps
ANCE(FirstP) 0.641 0.615 210K
ANCE(MaxP) 0.671 0.628 139K
MSMARCO Dev Passage Retrieval [email protected] Steps
pretrained BM25 warmup checkpoint 0.311 60K
ANCE Single-task Training Top-20 Top-100 Steps
NQ 81.9 87.5 136K
TriviaQA 80.3 85.3 100K
ANCE Multi-task Training Top-20 Top-100 Steps
NQ 82.1 87.9 300K
TriviaQA 80.3 85.2 300K

Click the steps in the table to download the corresponding checkpoints.

Our result for document ANCE(FirstP) TREC eval set top 100 retrieved document per query could be downloaded here. Our result for document ANCE(MaxP) TREC eval set top 100 retrieved document per query could be downloaded here.

The TREC eval set query embedding and their ids for our passage ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document ANCE(FirstP) experiment could be downloaded here. The TREC eval set query embedding and their ids for our document 2048 ANCE(MaxP) experiment could be downloaded here.

The t-SNE plots for all the queries in the TREC document eval set for ANCE(FirstP) could be viewed here.

run_train.sh and run_ann_data_gen.sh files contain the commands with the parameters we used for passage ANCE(FirstP), document ANCE(FirstP) and document 2048 ANCE(MaxP) to reproduce the results in this section. run_train_warmup.sh contains the commands to reproduce the results for the pretrained BM25 warmup checkpoint in this section

Note the steps to reproduce similar results as shown in the table might be a little different due to different synchronizing between training and ann data generation processes and other possible environment differences of the user experiments.

Owner
John
My research interests are machine learning and recommender systems.
John
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023