PyTorch common framework to accelerate network implementation, training and validation

Overview

pytorch-framework

PyTorch common framework to accelerate network implementation, training and validation.

This framework is inspired by works from MMLab, which modularize the data, network, loss, metric, etc. to make the framework to be flexible, easy to modify and to extend.

How to use

# install necessary libs
pip install -r requirements.txt

The framework contains six different subfolders:

  • networks: all networks should be implemented under the networks folder with {NAME}_network.py filename.
  • datasets: all datasets should be implemented under the datasets folder with {NAME}_dataset.py filename.
  • losses: all losses should be implemented under the losses folder with {NAME}_loss.py filename.
  • metrics: all metrics should be implemented under the metrics folder with {NAME}_metric.py filename.
  • models: all models should be implemented under the models folder with {NAME}_model.py filename.
  • utils: all util functions should be implemented under the utils folder with {NAME}_util.py filename.

The training and validation procedure can be defined in the specified .yaml file.

# training 
CUDA_VISIBLE_DEVICES=gpu_ids python train.py --opt options/train.yaml

# validation/test
CUDA_VISIBLE_DEVICES=gpu_ids python test.py --opt options/test.yaml

In the .yaml file for training, you can define all the things related to training such as the experiment name, model, dataset, network, loss, optimizer, metrics and other hyper-parameters. Here is an example to train VGG16 for image classification:

# general setting
name: vgg_train
backend: dp # DataParallel
type: ClassifierModel
num_gpu: auto

# path to resume network
path:
  resume_state: ~

# datasets
datasets:
  train_dataset:
    name: TrainDataset
    type: ImageNet
    data_root: ../data/train_data
  val_dataset:
    name: ValDataset
    type: ImageNet
    data_root: ../data/val_data
  # setting for train dataset
  batch_size: 8

# network setting
networks:
  classifier:
    type: VGG16
    num_classes: 1000

# training setting
train:
  total_iter: 10000
  optims:
    classifier:
      type: Adam
      lr: 1.0e-4
  schedulers:
    classifier:
      type: none
  losses:
    ce_loss:
      type: CrossEntropyLoss

# validation setting
val:
  val_freq: 10000

# log setting
logger:
  print_freq: 100
  save_checkpoint_freq: 10000

In the .yaml file for validation, you can define all the things related to validation such as: model, dataset, metrics. Here is an example:

# general setting
name: test
backend: dp # DataParallel
type: ClassifierModel
num_gpu: auto
manual_seed: 1234

# path
path:
  resume_state: experiments/train/models/final.pth
  resume: false

# datasets
datasets:
  val_dataset:
    name: ValDataset
    type: ImageNet
    data_root: ../data/test_data

# network setting
networks:
  classifier:
    type: VGG
    num_classes: 1000

# validation setting
val:
  metrics:
    accuracy:
      type: calculate_accuracy

Framework Details

The core of the framework is the BaseModel in the base_model.py. The BaseModel controls the whole training/validation procedure from initialization over training/validation iteration to results saving.

  • Initialization: In the model initialization, it will read the configuration in the .yaml file and construct the corresponding networks, datasets, losses, optimizers, metrics, etc.
  • Training/Validation: In the training/validation procedure, you can refer the training process in the train.py and the validation process in the test.py.
  • Results saving: The model will automatically save the state_dict for networks, optimizers and other hyperparameters during the training.

The configuration of the framework is down by Register in the registry.py. The Register has a object map (key-value pair). The key is the name of the object, the value is the class of the object. There are total 4 different registers for networks, datasets, losses and metrics. Here is an example to register a new network:

import torch
import torch.nn as nn

from utils.registry import NETWORK_REGISTRY

@NETWORK_REGISTRY.register()
class MyNet(nn.Module):
  ...
Owner
Dongliang Cao
Dongliang Cao
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Prototype python implementation of the ome-ngff table spec

Prototype python implementation of the ome-ngff table spec

Kevin Yamauchi 8 Nov 20, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022