The "breathing k-means" algorithm with datasets and example notebooks

Overview

The Breathing K-Means Algorithm (with examples)

The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is better (higher solution quality) and faster (lower CPU time usage) than k-means++.

Techreport: https://arxiv.org/abs/2006.15666 (submitted for publication)

Typical results for the "Birch" data set (100000 points drawn from a mixture of 100 circular Gaussians). k=100 Birch1 data set

Can you spot the mistakes? :-)

Installation from pypi

pip install bkmeans

Local installation to run the examples

Clone the repository

git clone https://github.com/gittar/breathing-k-means

Enter the top directory.

cd breathing-k-means

Create the conda environment 'bkm' (or any other name) via

conda env create -n bkm -f environment.yml

Activate the created environment via

conda activate bkm

To run a jupyter notebook with examples, type, e.g.:

jupyter lab notebooks/2D.ipynb

Content

The top level folder contains the following subfolders

  • data/ - data sets used in the notebooks

  • notebooks/ - jupyter notebooks with all examples from the technical report

  • src/

    • bkmeans.py - reference implementation of breathing k-means
  • misc/

    • aux.py - auxiliary functions
    • dataset.py - general class to administer and plot data sets
    • runfunctions.py - wrapper functions used in the notebook

API

The included class BKMeans is subclassed from scikit-learn's KMeans class and has, therefore, the same API. It can be used as a plug-in replacement for scikit-learn's KMeans.

There is one new parameters which can be ignored (left at default) for normal usage:

  • m (breathing depth), default: 5

The parameter m can also be used, however, to generate faster ( 1 < m < 5) or better (m>5) solutions. For details see the technical report.

Example 1: running on simple random data set

Code:

import numpy as np
from bkmeans import BKMeans

# generate random data set
X=np.random.rand(1000,2)

# create BKMeans instance
bkm = BKMeans(n_clusters=100)

# run the algorithm
bkm.fit(X)

# print SSE (inertia in scikit-learn terms)
print(bkm.inertia_)

Output:

1.1775040547902602

Example 2: comparison with k-means++ (multiple runs)

Code:

import numpy as np
from sklearn.cluster import KMeans
from bkmeans import BKMeans

# random 2D data set
X=np.random.rand(1000,2)

# number of centroids
k=100

for i in range(5):
    # kmeans++
    km = KMeans(n_clusters=k)
    km.fit(X)

    # breathing k-means
    bkm = BKMeans(n_clusters=k)
    bkm.fit(X)

    # relative SSE improvement of bkm over km++
    imp = 1 - bkm.inertia_/km.inertia_
    print(f"SSE improvement over k-means++: {imp:.2%}")

Output:

SSE improvement over k-means++: 3.38%
SSE improvement over k-means++: 4.16%
SSE improvement over k-means++: 6.14%
SSE improvement over k-means++: 6.79%
SSE improvement over k-means++: 4.76%

Acknowledgements

Kudos go the scikit-learn team for their excellent sklearn.cluster.KMeans class, also to the developers and maintainers of the other packages used: numpy, scipy, matplotlib, jupyterlab

Owner
Bernd Fritzke
Bernd Fritzke
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022