Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Overview

Contrast and Mix (CoMix)

The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing part of Advances in Neural Information Processing Systems (NeurIPS) 2021.

Aadarsh Sahoo1, Rutav Shah1, Rameswar Panda2, Kate Saenko2,3, Abir Das1

1 IIT Kharagpur, 2 MIT-IBM Watson AI Lab, 3 Boston University

[Paper] [Project Page]

 

Fig. Temporal Contrastive Learning with Background Mixing and Target Pseudo-labels. Temporal contrastive loss (left) contrasts a single temporally augmented positive (same video, different speed) per anchor against rest of the videos in a mini-batch as negatives. Incorporating background mixing (middle) provides additional positives per anchor possessing same action semantics with a different background alleviating background shift across domains. Incorporating target pseudo-labels (right) additionally enhances the discriminabilty by contrasting the target videos with the same pseudo-label as positives against rest of the videos as negatives.

 

Preparing the Environment

Conda

Please use the comix_environment.yml file to create the conda environment comix as:

conda env create -f comix_environment.yml

Pip

Please use the requirements.txt file to install all the required dependencies as:

pip install -r requirements.txt

Data Directory Structure

All the datasets should be stored in the folder ./data following the convention ./data/ and it must be passed as an argument to base_dir=./data/ .

UCF - HMDB

For ucf_hmdb dataset with base_dir=./data/ucf_hmdb the structure would be as follows:

.
├── ...
├── data
│   ├── ucf_hmdb
│   │   ├── ucf_videos
|   |   |   ├── 
   
    
|   |   |   |   ├── 
    
     
|   |   |   |   ├── 
     
      
|   |   |   |   ├── ...
|   |   |   ├── 
      
       
|   |   |   ├── ...
│   │   ├── hmdb_videos
|   |   ├── ucf_BG
|   |   └── hmdb_BG
│   └──
└──

      
     
    
   
Jester

For Jester dataset with base_dir=./data/jester the structure would be as follows

.
├── ...
├── data
│   ├── jester
|   |   ├── jester_videos
|   |   |   ├── 
   
    
|   |   |   |   ├── 
    
     
|   |   |   |   ├── 
     
      
|   |   |   |   ├── ...
|   |   |   ├── 
      
       
|   |   |   ├── ...
|   |   ├── jester_BG
|   |   |   ├── 
       
         | | | | ├── 
        
          | | | ├── ... └── └── └── 
        
       
      
     
    
   
Epic-Kitchens

For Epic Kitchens dataset with base_dir=./data/epic_kitchens the structure would be as follows (we follow the same structure as in the original dataset) :

.
├── ...
├── data
│   ├── epic_kitchens
|   |   ├── epic_kitchens_videos
|   |   |   ├── train
|   |   |   |   ├── D1
|   |   |   |   |   ├── 
   
    
|   |   |   |   |   |   ├── 
    
     
|   |   |   |   |   |   ├── 
     
      
|   |   |   |   |   |   ├── ...
|   |   |   |   |   ├── 
      
       
|   |   |   |   |   ├── ...
|   |   |   |   ├── D2
|   |   |   |   └── D3
|   |   |   └── test
└── └── └── epic_kitchens_BG

      
     
    
   

For using datasets stored in some other directories, please pass the parameter base_dir accordingly.

Background Extraction using Temporal Median Filtering

Please refer to the folder ./background_extraction for the codes to extract backgrounds using temporal median filtering.

Data

All the required split files are provided inside the directory ./video_splits.

The official download links for the datasets used for this paper are: [UCF-101] [HMDB-51] [Jester] [Epic Kitchens]

Training CoMix

Here are some of the sample and recomended commands to train CoMix for the transfer task of:

UCF -> HMDB from UCF-HMDB dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name UCF-HMDB --src_dataset UCF --tgt_dataset HMDB --batch_size 8 --model_root ./checkpoints_ucf_hmdb --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.1 --lambda_tpl 0.01 --base_dir ./data/ucf_hmdb

S -> T from Jester dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name Jester --src_dataset S --tgt_dataset T --batch_size 8 --model_root ./checkpoints_jester --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.1 --lambda_tpl 0.1 --base_dir ./data/jester

D1 -> D2 from Epic-Kitchens dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name Epic-Kitchens --src_dataset D1 --tgt_dataset D2 --batch_size 8 --model_root ./checkpoints_epic_d1_d2 --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.01 --lambda_tpl 0.01 --base_dir ./data/epic_kitchens

For detailed description regarding the arguments, use:

python main.py --help

Citing CoMix

If you use codes in this repository, consider citing CoMix. Thanks!

@article{sahoo2021contrast,
  title={Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing},
  author={Sahoo, Aadarsh and Shah, Rutav and Panda, Rameswar and Saenko, Kate and Das, Abir},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Computer Vision and Intelligence Research (CVIR)
The Computer Vision and Intelligence Research (CVIR) group is part of the Department of Computer Science and Engineering at IIT Kharagpur.
Computer Vision and Intelligence Research (CVIR)
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022