Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Overview

Contrast and Mix (CoMix)

The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing part of Advances in Neural Information Processing Systems (NeurIPS) 2021.

Aadarsh Sahoo1, Rutav Shah1, Rameswar Panda2, Kate Saenko2,3, Abir Das1

1 IIT Kharagpur, 2 MIT-IBM Watson AI Lab, 3 Boston University

[Paper] [Project Page]

 

Fig. Temporal Contrastive Learning with Background Mixing and Target Pseudo-labels. Temporal contrastive loss (left) contrasts a single temporally augmented positive (same video, different speed) per anchor against rest of the videos in a mini-batch as negatives. Incorporating background mixing (middle) provides additional positives per anchor possessing same action semantics with a different background alleviating background shift across domains. Incorporating target pseudo-labels (right) additionally enhances the discriminabilty by contrasting the target videos with the same pseudo-label as positives against rest of the videos as negatives.

 

Preparing the Environment

Conda

Please use the comix_environment.yml file to create the conda environment comix as:

conda env create -f comix_environment.yml

Pip

Please use the requirements.txt file to install all the required dependencies as:

pip install -r requirements.txt

Data Directory Structure

All the datasets should be stored in the folder ./data following the convention ./data/ and it must be passed as an argument to base_dir=./data/ .

UCF - HMDB

For ucf_hmdb dataset with base_dir=./data/ucf_hmdb the structure would be as follows:

.
├── ...
├── data
│   ├── ucf_hmdb
│   │   ├── ucf_videos
|   |   |   ├── 
   
    
|   |   |   |   ├── 
    
     
|   |   |   |   ├── 
     
      
|   |   |   |   ├── ...
|   |   |   ├── 
      
       
|   |   |   ├── ...
│   │   ├── hmdb_videos
|   |   ├── ucf_BG
|   |   └── hmdb_BG
│   └──
└──

      
     
    
   
Jester

For Jester dataset with base_dir=./data/jester the structure would be as follows

.
├── ...
├── data
│   ├── jester
|   |   ├── jester_videos
|   |   |   ├── 
   
    
|   |   |   |   ├── 
    
     
|   |   |   |   ├── 
     
      
|   |   |   |   ├── ...
|   |   |   ├── 
      
       
|   |   |   ├── ...
|   |   ├── jester_BG
|   |   |   ├── 
       
         | | | | ├── 
        
          | | | ├── ... └── └── └── 
        
       
      
     
    
   
Epic-Kitchens

For Epic Kitchens dataset with base_dir=./data/epic_kitchens the structure would be as follows (we follow the same structure as in the original dataset) :

.
├── ...
├── data
│   ├── epic_kitchens
|   |   ├── epic_kitchens_videos
|   |   |   ├── train
|   |   |   |   ├── D1
|   |   |   |   |   ├── 
   
    
|   |   |   |   |   |   ├── 
    
     
|   |   |   |   |   |   ├── 
     
      
|   |   |   |   |   |   ├── ...
|   |   |   |   |   ├── 
      
       
|   |   |   |   |   ├── ...
|   |   |   |   ├── D2
|   |   |   |   └── D3
|   |   |   └── test
└── └── └── epic_kitchens_BG

      
     
    
   

For using datasets stored in some other directories, please pass the parameter base_dir accordingly.

Background Extraction using Temporal Median Filtering

Please refer to the folder ./background_extraction for the codes to extract backgrounds using temporal median filtering.

Data

All the required split files are provided inside the directory ./video_splits.

The official download links for the datasets used for this paper are: [UCF-101] [HMDB-51] [Jester] [Epic Kitchens]

Training CoMix

Here are some of the sample and recomended commands to train CoMix for the transfer task of:

UCF -> HMDB from UCF-HMDB dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name UCF-HMDB --src_dataset UCF --tgt_dataset HMDB --batch_size 8 --model_root ./checkpoints_ucf_hmdb --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.1 --lambda_tpl 0.01 --base_dir ./data/ucf_hmdb

S -> T from Jester dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name Jester --src_dataset S --tgt_dataset T --batch_size 8 --model_root ./checkpoints_jester --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.1 --lambda_tpl 0.1 --base_dir ./data/jester

D1 -> D2 from Epic-Kitchens dataset:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --manual_seed 1 --dataset_name Epic-Kitchens --src_dataset D1 --tgt_dataset D2 --batch_size 8 --model_root ./checkpoints_epic_d1_d2 --save_in_steps 500 --log_in_steps 50 --eval_in_steps 50 --pseudo_threshold 0.7 --warmstart_models True --num_iter_warmstart 4000 --num_iter_adapt 10000 --learning_rate 0.01 --learning_rate_ws 0.01 --lambda_bgm 0.01 --lambda_tpl 0.01 --base_dir ./data/epic_kitchens

For detailed description regarding the arguments, use:

python main.py --help

Citing CoMix

If you use codes in this repository, consider citing CoMix. Thanks!

@article{sahoo2021contrast,
  title={Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing},
  author={Sahoo, Aadarsh and Shah, Rutav and Panda, Rameswar and Saenko, Kate and Das, Abir},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Computer Vision and Intelligence Research (CVIR)
The Computer Vision and Intelligence Research (CVIR) group is part of the Department of Computer Science and Engineering at IIT Kharagpur.
Computer Vision and Intelligence Research (CVIR)
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
Nicholas Lee 3 Jan 09, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 08, 2023
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021