Detectorch - detectron for PyTorch

Overview

Detectorch - detectron for PyTorch

(Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inference and evaluation are supported -- no training) (News: Now supporting FPN and ResNet-101!)

This code allows to use some of the Detectron models for object detection from Facebook AI Research with PyTorch.

It currently supports:

  • Fast R-CNN
  • Faster R-CNN
  • Mask R-CNN

It supports ResNet-50/101 models with or without FPN. The pre-trained models from caffe2 can be imported and used on PyTorch.

Example Mask R-CNN with ResNet-101 and FPN.

Evaluation

Both bounding box evaluation and instance segmentation evaluation where tested, yielding the same results as in the Detectron caffe2 models. These results below have been computed using the PyTorch code:

Model box AP mask AP model id
fast_rcnn_R-50-C4_2x 35.6 36224046
fast_rcnn_R-50-FPN_2x 36.8 36225249
e2e_faster_rcnn_R-50-C4_2x 36.5 35857281
e2e_faster_rcnn_R-50-FPN_2x 37.9 35857389
e2e_mask_rcnn_R-50-C4_2x 37.8 32.8 35858828
e2e_mask_rcnn_R-50-FPN_2x 38.6 34.5 35859007
e2e_mask_rcnn_R-101-FPN_2x 40.9 36.4 35861858

Training

Training code is experimental. See train_fast.py for training Fast R-CNN. It seems to work, but slow.

Installation

First, clone the repo with git clone --recursive https://github.com/ignacio-rocco/detectorch so that you also clone the Coco API.

The code can be used with PyTorch 0.3.1 or PyTorch 0.4 (master) under Python 3. Anaconda is recommended. Other required packages

  • torchvision (conda install torchvision -c soumith)
  • opencv (conda install -c conda-forge opencv )
  • cython (conda install cython)
  • matplotlib (conda install matplotlib)
  • scikit-image (conda install scikit-image)
  • ninja (conda install ninja) (required for Pytorch 0.4 only)

Additionally, you need to build the Coco API and RoIAlign layer. See below.

Compiling the Coco API

If you cloned this repo with git clone --recursive you should have also cloned the cocoapi in lib/cocoapi. Compile this with:

cd lib/cocoapi/PythonAPI
make install

Compiling RoIAlign

The RoIAlign layer was converted from the caffe2 version. There are two different implementations for each PyTorch version:

  • Pytorch 0.4: RoIAlign using ATen library (lib/cppcuda). Compiled JIT when loaded.
  • PyTorch 0.3.1: RoIAlign using TH/THC and cffi (lib/cppcuda_cffi). Needs to be compiled with:
cd lib/cppcuda_cffi
./make.sh 

Quick Start

Check the demo notebook.

Owner
Ignacio Rocco
Ignacio Rocco
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022