MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

Related tags

Deep LearningMVSDF
Overview

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

Intro

This is the official implementation for the ICCV 2021 paper Learning Signed Distance Field for Multi-view Surface Reconstruction

In this work, we introduce a novel neural surface reconstruction framework that leverages the knowledge of stereo matching and feature consistency to optimize the implicit surface representation. More specifically, we apply a signed distance field (SDF) and a surface light field to represent the scene geometry and appearance respectively. The SDF is directly supervised by geometry from stereo matching, and is refined by optimizing the multi-view feature consistency and the fidelity of rendered images. Our method is able to improve the robustness of geometry estimation and support reconstruction of complex scene topologies. Extensive experiments have been conducted on DTU, EPFL and Tanks and Temples datasets. Compared to previous state-of-the-art methods, our method achieves better mesh reconstruction in wide open scenes without masks as input.

How to Use

Environment Setup

The code is tested in the following environment (manually installed packages only). The newer version of the packages should also be fine.

dependencies:
  - cudatoolkit=10.2.89
  - numpy=1.19.2
  - python=3.8.8
  - pytorch=1.7.1
  - tqdm=4.60.0
  - pip:
    - cvxpy==1.1.12
    - gputil==1.4.0
    - imageio==2.9.0
    - open3d==0.13.0
    - opencv-python==4.5.1.48
    - pyhocon==0.3.57
    - scikit-image==0.18.3
    - scikit-learn==0.24.2
    - trimesh==3.9.13
    - pybind11==2.9.0

Data Preparation

Download preprocessed DTU datasets from here

Training

cd code
python training/exp_runner.py --data_dir <DATA_DIR>/scan<SCAN>/imfunc4 --batch_size 8 --nepoch 1800 --expname dtu_<SCAN>

The results will be written in exps/mvsdf_dtu_ .

Trained Models

Download trained models and put them in exps folder. This set of models achieve the following results.

Chamfer PSNR
24 0.846 24.67
37 1.894 20.15
40 0.895 25.15
55 0.435 23.19
63 1.067 26.24
65 0.903 26.9
69 0.746 26.54
83 1.241 25.15
97 1.009 25.71
105 1.320 26.48
106 0.867 28.81
110 0.842 23.16
114 0.340 27.51
118 0.472 28.46
122 0.466 27.71
Mean 0.890 25.72

Testing

python evaluation/eval.py --data_dir <DATA_DIR>/scan<SCAN>/imfunc4 --expname dtu_<SCAN> [--eval_rendering]

add --eval_rendering flag to generate and evaluate rendered images. The results will be written in evals/mvsdf_dtu_ .

Trimming

cd mesh_cut
python setup.py build_ext -i  # compile
python mesh_cut.py 
    
    
      [--thresh 15 --smooth 10]

    
   

Note that this part of code can only be used for research purpose. Please refer to mesh_cut/IBFS/license.txt

Evaluation

Apart from the official implementation, you can also use my re-implemented evaluation script.

Citation

If you find our work useful in your research, please kindly cite

@article{zhang2021learning,
	title={Learning Signed Distance Field for Multi-view Surface Reconstruction},
	author={Zhang, Jingyang and Yao, Yao and Quan, Long},
	journal={International Conference on Computer Vision (ICCV)},
	year={2021}
}
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
PyElastica is the Python implementation of Elastica, an open-source software for the simulation of assemblies of slender, one-dimensional structures using Cosserat Rod theory.

PyElastica PyElastica is the python implementation of Elastica: an open-source project for simulating assemblies of slender, one-dimensional structure

Gazzola Lab 105 Jan 09, 2023
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022