Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Related tags

Deep Learningfishr
Overview

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization

Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization | paper

Alexandre Ramé, Corentin Dancette, Matthieu Cord

Abstract

Learning robust models that generalize well under changes in the data distribution is critical for real-world applications. To this end, there has been a growing surge of interest to learn simultaneously from multiple training domains - while enforcing different types of invariance across those domains. Yet, all existing approaches fail to show systematic benefits under fair evaluation protocols.

In this paper, we propose a new learning scheme to enforce domain invariance in the space of the gradients of the loss function: specifically, we introduce a regularization term that matches the domain-level variances of gradients across training domains. Critically, our strategy, named Fishr, exhibits close relations with the Fisher Information and the Hessian of the loss. We show that forcing domain-level gradient covariances to be similar during the learning procedure eventually aligns the domain-level loss landscapes locally around the final weights.

Extensive experiments demonstrate the effectiveness of Fishr for out-of-distribution generalization. In particular, Fishr improves the state of the art on the DomainBed benchmark and performs significantly better than Empirical Risk Minimization.

Installation

Requirements overview

Our implementation relies on the BackPACK package in PyTorch to easily compute gradient variances.

  • python == 3.7.10
  • torch == 1.8.1
  • torchvision == 0.9.1
  • backpack-for-pytorch == 1.3.0
  • numpy == 1.20.2

Procedure

  1. Clone the repo:
$ git clone https://github.com/alexrame/fishr.git
  1. Install this repository and the dependencies using pip:
$ conda create --name fishr python=3.7.10
$ conda activate fishr
$ cd fishr
$ pip install -r requirements.txt

With this, you can edit the Fishr code on the fly.

Overview

This github enables the replication of our two main experiments: (1) on Colored MNIST in the setup defined by IRM and (2) on the DomainBed benchmark.

Colored MNIST in the IRM setup

We first validate that Fishr tackles distribution shifts on the synthetic Colored MNIST.

Main results (Table 2 in Section 6.A)

To reproduce the results from Table 2, call python3 coloredmnist/train_coloredmnist.py --algorithm $algorithm where algorithm is either:

Results will be printed at the end of the script, averaged over 10 runs. Note that all hyperparameters are taken from the seminal IRM implementation.

    Method | Train acc. | Test acc.  | Gray test acc.
   --------|------------|------------|----------------
    ERM    | 86.4 ± 0.2 | 14.0 ± 0.7 |   71.0 ± 0.7
    IRM    | 71.0 ± 0.5 | 65.6 ± 1.8 |   66.1 ± 0.2
    V-REx  | 71.7 ± 1.5 | 67.2 ± 1.5 |   68.6 ± 2.2
    Fishr  | 71.0 ± 0.9 | 69.5 ± 1.0 |   70.2 ± 1.1

Without label flipping (Table 5 in Appendix C.2.3)

The script coloredmnist.train_coloredmnist also accepts as input the argument --label_flipping_prob which defines the label flipping probability. By default, it's 0.25, so to reproduce the results from Table 5 you should set --label_flipping_prob 0.

Fishr variants (Table 6 in Appendix C.2.4)

This table considers two additional Fishr variants, reproduced with algorithm set to:

  • fishr_offdiagonal for Fishr but without centering the gradient variances
  • fishr_notcentered for Fishr but on the full covariance rather than only the diagonal

DomainBed

DomainBed is a PyTorch suite containing benchmark datasets and algorithms for domain generalization, as introduced in In Search of Lost Domain Generalization. Instructions below are copied and adapted from the official github.

Algorithms and hyperparameter grids

We added Fishr as a new algorithm here, and defined Fishr's hyperparameter grids here, as defined in Table 7 in Appendix D.

Datasets

We ran Fishr on following datasets:

Launch training

Download the datasets:

python3 -m domainbed.scripts.download\
       --data_dir=/my/data/dir

Train a model for debugging:

python3 -m domainbed.scripts.train\
       --data_dir=/my/data/dir/\
       --algorithm Fishr\
       --dataset ColoredMNIST\
       --test_env 2

Launch a sweep for hyperparameter search:

python -m domainbed.scripts.sweep launch\
       --data_dir=/my/data/dir/\
       --output_dir=/my/sweep/output/path\
       --command_launcher MyLauncher
       --datasets ColoredMNIST\
       --algorithms Fishr

Here, MyLauncher is your cluster's command launcher, as implemented in command_launchers.py.

Performances inspection (Tables 3 and 4 in Section 6.B.2, Tables in Appendix G)

To view the results of your sweep:

python -m domainbed.scripts.collect_results\
       --input_dir=/my/sweep/output/path

We inspect performances using following model selection criteria, that differ in what data is used to choose the best hyper-parameters for a given model:

  • OracleSelectionMethod (Oracle): A random subset from the data of the test domain.
  • IIDAccuracySelectionMethod (Training): A random subset from the data of the training domains.

Critically, Fishr performs consistently better than Empirical Risk Minimization.

Model selection Algorithm Colored MNIST Rotated MNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
Oracle ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7
Oracle Fishr 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 68.2 ± 0.2 53.6 ± 0.4 41.8 ± 0.2 70.8
Training ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
Training Fishr 52.0 ± 0.2 97.8 ± 0.0 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 67.1

Conclusion

We addressed the task of out-of-distribution generalization for computer vision classification tasks. We derive a new and simple regularization - Fishr - that matches the gradient variances across domains as a proxy for matching domain-level Hessians. Our scalable strategy reaches state-of-the-art performances on the DomainBed benchmark and performs better than ERM. Our empirical experiments suggest that Fishr regularization would consistently improve a deep classifier in real-world applications when dealing with data from multiple domains. If you need help to use Fishr, please open an issue or contact [email protected].

Citation

If you find this code useful for your research, please consider citing our work (under review):

@article{rame2021ishr,
    title={Fishr: Invariant Gradient Variances for Out-of-distribution Generalization},
    author={Alexandre Rame and Corentin Dancette and Matthieu Cord},
    year={2021},
    journal={arXiv preprint arXiv:2109.02934}
}
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022