Code for "Causal autoregressive flows" - AISTATS, 2021

Related tags

Deep Learningcarefl
Overview

Code for "Causal Autoregressive Flow"

This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, presented at the 24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021).

The repository originally contained the code to reproduce results presented in Autoregressive flow-based causal discovery and inference, presented at the 2nd ICML workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (2020). Switch to the workshop branch to access this version of the code.

Dependencies

This project was tested with the following versions:

  • python 3.7
  • numpy 1.18.2
  • pytorch 1.4
  • scikit-learn 0.22.2
  • scipy 1.4.1
  • matplotlib 3.2.1
  • seaborn 0.10

This project uses normalizing flows implementation from this repository.

Usage

The main.py script is the main gateway to reproduce the experiments detailed in the mansucript, and is straightforward to use. Type python main.py -h to learn about the options.

Hyperparameters can be changed through the configuration files under configs/. The main.py is setup to read the corresponding config file for each experiment, but this can be overwritten using the -y or --config flag.

The results are saved under the run/ folder. This can be changed using the --run flag.

Running the main.py script will only produce data for a single set of parameters, which are specified in the config file. These parameters include the dataset type, the number of simulations, the algorithm, the number of observations, the architectural parameters for the neural networks (number of layers, dimension of the hidden layer...), etc...

To reproduce the figures in the manuscript, the script should be run multiple time for each different combination of parameters, to generate the data used for the plots. Convience scripts are provided to do this in parallel using SLURM (see below). These make use of certain debugging flags that overwrite certain fields in the config file.

Finally, the flow.scale field in the config files is used to switch from CAREFL to CAREFL-NS by setting it to false.

Examples

Experiments where run using the SLURM system. The slurm_main_cpu.sbatch is used to run jobs on CPU, and slurm_main.sbatch for the GPU.

To run simulations in parallel:

for SIZE in 25 50 75 100 150 250 500; do
    for ALGO in lrhyv reci anm; do
        for DSET in linear hoyer2009 nueralnet_l1 mnm veryhighdim; do
            sbatch slurm_main_cpu.sbatch -s -m $DSET -a $ALGO -n $SIZE
        done
    done
done
ALGO=carefl
for SIZE in 25 50 75 100 150 250 500; do
    for DSET in linear hoyer2009 nueralnet_l1 mnm veryhighdim; do
        sbatch slurm_main_cpu.sbatch -s -m $DSET -a $ALGO -n $SIZE
    done
done

To run interventions:

for SIZE in 250 500 750 1000 1250 1500 2000 2500; do
    for ALGO in gp linear; do
        sbatch slurm_main_cpu.sbatch -i -a $ALGO -n $SIZE
    done
done
ALGO=carefl
for SIZE in 250 500 750 1000 1250 1500 2000 2500; do
    sbatch slurm_main_cpu.sbatch -i -a $ALGO -n $SIZE
done

To run arrow of time on EEG data:

for ALGO in LRHyv RECI ANM; do
    for IDX in {0..117}; do
        sbatch slurm_main_cpu.sbatch -e -n $IDX -a $ALGO --n-sims 11
    done
done
ALGO=carefl
for IDX in {0..117}; do
    sbatch slurm_main.sbatch -e -n $IDX -a $ALGO --n-sims 11
done

To run interventions on fMRI data (this experiment outputs to standard output):

python main.py -f

To run pairs:

for IDX in {1..108}; do
    sbatch slurm_main_cpu.sbatch -p -n $IDX --n-sims 10
done

Reference

If you find this code helpful/inspiring for your research, we would be grateful if you cite the following:

@inproceedings{khemakhem2021causal,
  title = { Causal Autoregressive Flows },
  author = {Khemakhem, Ilyes and Monti, Ricardo and Leech, Robert and Hyvarinen, Aapo},
  booktitle = {Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
  pages = {3520--3528},
  year = {2021},
  editor = {Banerjee, Arindam and Fukumizu, Kenji},
  volume = {130},
  series = {Proceedings of Machine Learning Research},
  month = {13--15 Apr},
  publisher = {PMLR}
}

License

A full copy of the license can be found here.

MIT License

Copyright (c) 2020 Ilyes Khemakhem and Ricardo Pio Monti

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Owner
Ricardo Pio Monti
Ricardo Pio Monti
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

Francis R. Willett 306 Jan 03, 2023
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022