Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

Overview

SinGAN

Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19)

Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

ICCV 2019 Best paper award (Marr prize)

Random samples from a single image

With SinGAN, you can train a generative model from a single natural image, and then generate random samples from the given image, for example:

SinGAN's applications

SinGAN can be also used for a line of image manipulation tasks, for example: This is done by injecting an image to the already trained model. See section 4 in our paper for more details.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{rottshaham2019singan,
  title={SinGAN: Learning a Generative Model from a Single Natural Image},
  author={Rott Shaham, Tamar and Dekel, Tali and Michaeli, Tomer},
  booktitle={Computer Vision (ICCV), IEEE International Conference on},
  year={2019}
}

Code

Install dependencies

python -m pip install -r requirements.txt

This code was tested with python 3.6, torch 1.4

Please note: the code currently only supports torch 1.4 or earlier because of the optimization scheme.

For later torch versions, you may try this repository: https://github.com/kligvasser/SinGAN (results won't necessarily be identical to the official implementation).

Train

To train SinGAN model on your own image, put the desired training image under Input/Images, and run

python main_train.py --input_name <input_file_name>

This will also use the resulting trained model to generate random samples starting from the coarsest scale (n=0).

To run this code on a cpu machine, specify --not_cuda when calling main_train.py

Random samples

To generate random samples from any starting generation scale, please first train SinGAN model on the desired image (as described above), then run

python random_samples.py --input_name <training_image_file_name> --mode random_samples --gen_start_scale <generation start scale number>

pay attention: for using the full model, specify the generation start scale to be 0, to start the generation from the second scale, specify it to be 1, and so on.

Random samples of arbitrary sizes

To generate random samples of arbitrary sizes, please first train SinGAN model on the desired image (as described above), then run

python random_samples.py --input_name <training_image_file_name> --mode random_samples_arbitrary_sizes --scale_h <horizontal scaling factor> --scale_v <vertical scaling factor>

Animation from a single image

To generate short animation from a single image, run

python animation.py --input_name <input_file_name> 

This will automatically start a new training phase with noise padding mode.

Harmonization

To harmonize a pasted object into an image (See example in Fig. 13 in our paper), please first train SinGAN model on the desired background image (as described above), then save the naively pasted reference image and it's binary mask under "Input/Harmonization" (see saved images for an example). Run the command

python harmonization.py --input_name <training_image_file_name> --ref_name <naively_pasted_reference_image_file_name> --harmonization_start_scale <scale to inject>

Please note that different injection scale will produce different harmonization effects. The coarsest injection scale equals 1.

Editing

To edit an image, (See example in Fig. 12 in our paper), please first train SinGAN model on the desired non-edited image (as described above), then save the naive edit as a reference image under "Input/Editing" with a corresponding binary map (see saved images for an example). Run the command

python editing.py --input_name <training_image_file_name> --ref_name <edited_image_file_name> --editing_start_scale <scale to inject>

both the masked and unmasked output will be saved. Here as well, different injection scale will produce different editing effects. The coarsest injection scale equals 1.

Paint to Image

To transfer a paint into a realistic image (See example in Fig. 11 in our paper), please first train SinGAN model on the desired image (as described above), then save your paint under "Input/Paint", and run the command

python paint2image.py --input_name <training_image_file_name> --ref_name <paint_image_file_name> --paint_start_scale <scale to inject>

Here as well, different injection scale will produce different editing effects. The coarsest injection scale equals 1.

Advanced option: Specify quantization_flag to be True, to re-train only the injection level of the model, to get a on a color-quantized version of upsampled generated images from the previous scale. For some images, this might lead to more realistic results.

Super Resolution

To super resolve an image, please run:

python SR.py --input_name <LR_image_file_name>

This will automatically train a SinGAN model correspond to 4x upsampling factor (if not exist already). For different SR factors, please specify it using the parameter --sr_factor when calling the function. SinGAN's results on the BSD100 dataset can be download from the 'Downloads' folder.

Additional Data and Functions

Single Image Fréchet Inception Distance (SIFID score)

To calculate the SIFID between real images and their corresponding fake samples, please run:

python SIFID/sifid_score.py --path2real <real images path> --path2fake <fake images path> 

Make sure that each of the fake images file name is identical to its corresponding real image file name. Images should be saved in .jpg format.

Super Resolution Results

SinGAN's SR results on the BSD100 dataset can be download from the 'Downloads' folder.

User Study

The data used for the user study can be found in the Downloads folder.

real folder: 50 real images, randomly picked from the places database

fake_high_variance folder: random samples starting from n=N for each of the real images

fake_mid_variance folder: random samples starting from n=N-1 for each of the real images

For additional details please see section 3.1 in our paper

Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021