DAN: Unfolding the Alternating Optimization for Blind Super Resolution

Overview

DAN-Basd-on-Openmmlab

DAN: Unfolding the Alternating Optimization for Blind Super Resolution

We reproduce DAN via mmediting based on open-sourced code.

Requirements

  • PyTorch >= 1.3
  • mmediting >= 0.9

DataSets

We use DIV2K and Flickr2K as our training datasets. For evaluation of Setting 2, we use DIV2KRK datasets,

Usages

How to run this repo: copy the file to the mmediting workspace and run the program directly based on the commands in mmediting

  1. Copy files to MMEditing workspace.
cd DAN-Basd-on-Openmmlab/
mv ./mmedit/models/restorers/dan.py ${mmediting_workspace}/mmedit/models/restorers/
mv ./mmedit/models/backbones/sr_backbones/dan_net.py ${mmediting_workspace}/mmedit/models/backbones/sr_backbones/
mv ./mmedit/models/common/DANpreprocess.py ${mmediting_workspace}/mmedit/models/common
mv ./configs/restorers/dan ${mmediting_workspace}/configs/restorers/
mv ./tools/data/super-resolution/dan_datasets ${mmediting_workspace}/tools/data/super-resolution/
  1. Modify the configuration file as follows:
pca_matrix_path='${mmediting_workspace}/tools/data/super-resolution/div2k/pca_matrix/pca_aniso_matrix_x4.pth' # your pca_matrix path
# Training
gt_folder='${dataset_workspace}/dataset/DF2K_train_HR_sub' # your train data path
# Testing
lq_folder='${dataset_workspace}/dataset/DIV2KRK/lr_x4' # your test data LR path
gt_folder='${dataset_workspace}/dataset/DIV2KRK/gt' # your test data HR path
  1. Add script to init file, as follows:
  • modify the mmedit/models/backbones/sr_backbones/__init__.py:
from .dan_net import DAN
# add DAN into __all__ list.
  • modify the mmedit/models/commons/__init__.py:
from .dan_preprocess import SRMDPreprocessing
# add SRMDreprocessing into __all__ list.
  • modify the mmedit/models/restorers/__init__.py:
from .dan import DAN
# add DAN into __all__ list.
  1. Training/Test

Before using it, please download and process the dataset and set the path in the configuration file.

  • Train
# Single GPU
python tools/train.py configs/restorers/dan/dan_setting2.py --work_dir ${YOUR_WORK_DIR}

# Multiple GPUs
./tools/dist_train.sh configs/restorers/dan/dan_setting2.py ${GPU_NUM} --work_dir ${YOUR_WORK_DIR}
  • Test
# Single GPU
python tools/test.py configs/restorers/dan/dan_setting2.py ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out ${RESULT_FILE}]

# Multiple GPUs
./tools/dist_test.sh configs/restorers/dan/dan_setting2.py ${CHECKPOINT_FILE} ${GPU_NUM} [--metrics ${METRICS}] [--out ${RESULT_FILE}]

Result

DIV2KRK

The passwds of download links are all 'ta2o'

Method scale Datasets PSNR Download
DAN x4 DIV2KRK 27.41 model / test_pkl

Owner
AlexZou
AlexZou
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
The "breathing k-means" algorithm with datasets and example notebooks

The Breathing K-Means Algorithm (with examples) The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is bette

Bernd Fritzke 75 Nov 17, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022