A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

Overview

🌟 HNSW + PostgreSQL Indexer

HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework.

It combines the reliability of PostgreSQL with the speed and efficiency of the HNSWlib nearest neighbor library.

It thus provides all the CRUD operations expected of a database system, while also offering fast and reliable vector lookup.

Requires a running PostgreSQL database service. For quick testing, you can run a containerized version locally with:

docker run -e POSTGRES_PASSWORD=123456 -p 127.0.0.1:5432:5432/tcp postgres:13.2

Syncing between PSQL and HNSW

By default, all data is stored in a PSQL database (as defined in the arguments). In order to add data to / build a HNSW index with your data, you need to manually call the /sync endpoint. This iterates through the data you have stored, and adds it to the HNSW index. By default, this is done incrementally, on top of whatever data the HNSW index already has. If you want to completely rebuild the index, use the parameter rebuild, like so:

flow.post(on='/sync', parameters={'rebuild': True})

At start-up time, the data from PSQL is synced into HNSW automatically. You can disable this with:

Flow().add(
    uses='jinahub://HNSWPostgresIndexer',
    uses_with={'startup_sync': False}
)

Automatic background syncing

WARNING: Experimental feature

Optionally, you can enable the option for automatic background syncing of the data into HNSW. This creates a thread in the background of the main operations, that will regularly perform the synchronization. This can be done with the sync_interval constructor argument, like so:

Flow().add(
    uses='jinahub://HNSWPostgresIndexer',
    uses_with={'sync_interval': 5}
)

sync_interval argument accepts an integer that represents the amount of seconds to wait between synchronization attempts. This should be adjusted based on your specific data amounts. For the duration of the background sync, the HNSW index will be locked to avoid invalid state, so searching will be queued. When sync_interval is enabled, the index will also be locked during search mode, so that syncing will be queued.

CRUD operations

You can perform all the usual operations on the respective endpoints

  • /index. Add new data to PostgreSQL
  • /search. Query the HNSW index with your Documents.
  • /update. Update documents in PostgreSQL
  • /delete. Delete documents in PostgreSQL.

Note. This only performs soft-deletion by default. This is done in order to not break the look-up of the document id after doing a search. For a hard delete, add 'soft_delete': False' to parameters. You might also perform a cleanup after a full rebuild of the HNSW index, by calling /cleanup.

Status endpoint

You can also get the information about the status of your data via the /status endpoint. This returns a Document whose tags contain the relevant information. The information can be returned via the following keys:

  • 'psql_docs': number of Documents stored in the PSQL database (includes entries that have been "soft-deleted")
  • 'hnsw_docs': the number of Documents indexed in the HNSW index
  • 'last_sync': the time of the last synchronization of PSQL into HNSW
  • 'pea_id': the shard number

In a sharded environment (parallel>1) you will get one Document from each shard. Each shard will have its own 'hnsw_docs', 'last_sync', 'pea_id', but they will all report the same 'psql_docs' (The PSQL database is available to all your shards). You need to sum the 'hnsw_docs' across these Documents, like so

result = f.post('/status', None, return_results=True)
result_docs = result[0].docs
total_hnsw_docs = sum(d.tags['hnsw_docs'] for d in result_docs)
Comments
  • Changing how /status method returns its values to try and merge with …

    Changing how /status method returns its values to try and merge with …

    …any pre-existing tags from previous executors if any.

    A shot at addressing the issue mentioned in https://github.com/jina-ai/executor-hnsw-postgres/issues/23

    opened by louisconcentricsky 6
  • feat: performance improvements

    feat: performance improvements

    Closes https://github.com/jina-ai/executor-hnsw-postgres/issues/6

    Results before this PR:

    indexing 1000 takes 0 seconds (0.22s)
    rolling update 3 replicas x 2 shards takes 0 seconds (0.82s)
    search with 10 takes 0 seconds (0.23s)
    
    indexing 10000 takes 0 seconds (0.75s)
    rolling update 3 replicas x 2 shards takes 9 seconds (9.08s)
    search with 10 takes 0 seconds (0.22s)
    
    indexing 100000 takes 7 seconds (7.59s)
    rolling update 3 replicas x 2 shards takes 7 minutes and 17 seconds (437.44s)
    search with 10 takes 0 seconds (0.22s)
    
    

    RESULTS NOW

    indexing 1000 takes 0 seconds (0.44s)                                                                                   
    rolling update 3 replicas x 2 shards takes 0 seconds (0.81s)
    
    indexing 10000 takes 1 second (1.01s)                                                                                   
    rolling update 3 replicas x 2 shards takes 2 seconds (2.63s)
    
    indexing 100000 takes 8 seconds (8.10s)                                                                                 
    rolling update 3 replicas x 2 shards takes 3 minutes and 27 seconds (207.14s)
    
    

    MORE BENCHMARKING

    indexing 500000 takes 30 seconds (30.07s)    
    rolling update 3 replicas x 2 shards takes 26 minutes and 57 seconds (1617.99s)
    search with 10 takes 0 seconds (0.21s)
    
    opened by cristianmtr 3
  • Status endpoint does not allow for compositing data with other executors

    Status endpoint does not allow for compositing data with other executors

    If another executor would also like to report some status information using the same status endpoint the return of the HNSQPostgresIndexer will remove it.

    It seems some manner of using object update on the tags or just placing the status under a particular key would be more friendlier.

    https://github.com/jina-ai/executor-hnsw-postgres/blob/79754090665e8bb86e85ab5693fa9b8be80977ce/executor/hnswpsql.py#L322

    opened by louisconcentricsky 1
  • feat: background sync (with threads)

    feat: background sync (with threads)

    Closes https://github.com/jina-ai/internal-tasks/issues/293

    Issues

    • [x] timestamp timezone difference
    • [x] psql connection pool gets exhausted
    • [x] locking resources in threaded access

    NOTE: Even if we don't merge this, the refactoring of PSQL Handler still needs to be merged, as the previous usage of Conn Pool had issues.

    opened by cristianmtr 1
  • fail to connect to PostgreSQL with docker-compose

    fail to connect to PostgreSQL with docker-compose

    • start a PostgreSQL service with docker:

    docker run -e POSTGRES_PASSWORD=123456 -p 127.0.0.1:5432:5432/tcp postgres:13.2

    • build a flow with one executor:HNSWPostgresIndexer

    • run the flow locally, it works well

    • expose the flow to docker-compose yaml, and run the flow with docker-compose ,get an error:

    image

    jina version info:

    
    - jina 3.3.19
    - docarray 0.12.2
    - jina-proto 0.1.8
    - jina-vcs-tag (unset)
    - protobuf 3.20.0
    - proto-backend cpp
    - grpcio 1.43.0
    - pyyaml 6.0
    - python 3.10.2
    - platform Linux
    - platform-release 4.4.0-186-generic
    - platform-version #216-Ubuntu SMP Wed Jul 1 05:34:05 UTC 2020
    - architecture x86_64
    - processor x86_64
    - uid 48710637999860
    - session-id 906abcd2-c797-11ec-b1df-2c4d544656f4
    - uptime 2022-04-29T16:37:11.758133
    - ci-vendor (unset)
    * JINA_DEFAULT_HOST (unset)
    * JINA_DEFAULT_TIMEOUT_CTRL (unset)
    * JINA_DEFAULT_WORKSPACE_BASE /home/chenhao/.jina/executor-workspace
    * JINA_DEPLOYMENT_NAME (unset)
    * JINA_DISABLE_UVLOOP (unset)
    * JINA_FULL_CLI (unset)
    * JINA_GATEWAY_IMAGE (unset)
    * JINA_GRPC_RECV_BYTES (unset)
    * JINA_GRPC_SEND_BYTES (unset)
    * JINA_HUBBLE_REGISTRY (unset)
    * JINA_HUB_CACHE_DIR (unset)
    * JINA_HUB_NO_IMAGE_REBUILD (unset)
    * JINA_HUB_ROOT (unset)
    * JINA_LOG_CONFIG (unset)
    * JINA_LOG_LEVEL (unset)
    * JINA_LOG_NO_COLOR (unset)
    * JINA_MP_START_METHOD (unset)
    * JINA_RANDOM_PORT_MAX (unset)
    * JINA_RANDOM_PORT_MIN (unset)
    * JINA_VCS_VERSION (unset)
    * JINA_CHECK_VERSION True
    
    opened by jerrychen1990 0
  • test: bug rolling update clear

    test: bug rolling update clear

    if you remove from tests/integration/test_hnsw_psql.py

    L:180

            if benchmark:
                f.post('/clear')
    

    the test test_benchmark_basic fails when it runs the second case

    even though clear is called at the beginning of the flow.

    Why?

    yes, /clear only hits one replica. but when we restart the flow there should be completely new replicas anyway

    opened by cristianmtr 0
  • performance(HNSWPSQL): syncing is slow

    performance(HNSWPSQL): syncing is slow

    Right now sync will be slow

    • [ ] we are iterating and doing individual updates (should batch somehow, per sync operation type - index, update, delete)
    • [x] if rebuild, the operations will always be index. We should optimize for this. Done in #5

    Numbers before any perf refactoring

    Performance

    indexing 1000 ...       indexing 1000 takes 0 seconds (0.22s)
    rolling update 3 replicas x 2 shards ...            [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
    rolling update 3 replicas x 2 shards takes 0 seconds (0.82s)
    search with 10 ...      search with 10 takes 0 seconds (0.23s)
    
    indexing 10000 ...      indexing 10000 takes 0 seconds (0.75s)
    rolling update 3 replicas x 2 shards ...            [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
    rolling update 3 replicas x 2 shards takes 9 seconds (9.08s)
    search with 10 ...      search with 10 takes 0 seconds (0.22s)
    
    indexing 100000 ...     indexing 100000 takes 7 seconds (7.59s)
    rolling update 3 replicas x 2 shards ...            [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
        [email protected][I]:Using existing table
    rolling update 3 replicas x 2 shards takes 7 minutes and 17 seconds (437.44s)
    search with 10 ...      search with 10 takes 0 seconds (0.22s)
    
    
    priority/important-soon type/maintenance 
    opened by cristianmtr 0
Releases(v0.9)
  • v0.8(Mar 8, 2022)

  • v0.7(Feb 11, 2022)

  • v0.6(Jan 3, 2022)

    What's Changed

    • docs: fix typo in delete endpoint and clarify by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/14

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.5...v0.6

    Source code(tar.gz)
    Source code(zip)
  • v0.5(Dec 14, 2021)

    What's Changed

    • fix: type of trav paths by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/13

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.4...v0.5

    Source code(tar.gz)
    Source code(zip)
  • v0.4(Dec 9, 2021)

    What's Changed

    • fix: allow using Executor in local mode by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/12

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.3...v0.4

    Source code(tar.gz)
    Source code(zip)
  • v0.3(Nov 26, 2021)

    What's Changed

    • feat: background sync (with threads) by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/9
    • docs: add docs on bg sync by @cristianmtr in https://github.com/jina-ai/executor-hnsw-postgres/pull/11

    Full Changelog: https://github.com/jina-ai/executor-hnsw-postgres/compare/v0.2...v0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.2(Nov 22, 2021)

  • v0.1(Nov 18, 2021)

Owner
Jina AI
A Neural Search Company. We provide the cloud-native neural search solution powered by state-of-the-art AI technology.
Jina AI
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
A Python implementation of active inference for Markov Decision Processes

A Python package for simulating Active Inference agents in Markov Decision Process environments. Please see our companion preprint on arxiv for an ove

235 Dec 21, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022