A PaddlePaddle version image model zoo.

Overview

Paddle-Image-Models

GitHub forks GitHub Repo stars Pypi Downloads GitHub release (latest by date including pre-releases) GitHub

English | 简体中文

A PaddlePaddle version image model zoo.

Install Package

Usage

  • Quick Start

    import paddle
    from ppim import rednet_26
    
    # Load the model
    model, val_transforms = rednet_26(pretrained=True)
    
    # Model summary 
    paddle.summary(model, input_size=(1, 3, 224, 224))
    
    # Random a input
    x = paddle.randn(shape=(1, 3, 224, 224))
    
    # Model forword
    out = model(x)
  • Finetune

    import paddle
    import paddle.nn as nn
    import paddle.vision.transforms as T
    from paddle.vision import Cifar100
    
    from ppim import rexnet_1_0
    
    # Load the model
    model, val_transforms = rexnet_1_0(pretrained=True, class_dim=100)
    
    # Use the PaddleHapi Model
    model = paddle.Model(model)
    
    # Set the optimizer
    opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
    
    # Set the loss function
    loss = nn.CrossEntropyLoss()
    
    # Set the evaluate metric
    metric = paddle.metric.Accuracy(topk=(1, 5))
    
    # Prepare the model 
    model.prepare(optimizer=opt, loss=loss, metrics=metric)
    
    # Set the data preprocess
    train_transforms = T.Compose([
        T.Resize(256, interpolation='bicubic'),
        T.RandomCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    
    # Load the Cifar100 dataset
    train_dataset = Cifar100(mode='train', transform=train_transforms, backend='pil')
    val_dataset = Cifar100(mode='test',  transform=val_transforms, backend='pil')
    
    # Finetune the model 
    model.fit(
        train_data=train_dataset, 
        eval_data=val_dataset, 
        batch_size=256, 
        epochs=2, 
        eval_freq=1, 
        log_freq=1, 
        save_dir='save_models', 
        save_freq=1, 
        verbose=1, 
        drop_last=False, 
        shuffle=True,
        num_workers=0
    )

Model Zoo

You might also like...
Object detection and instance segmentation toolkit based on PaddlePaddle.
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Official PaddlePaddle implementation of Paint Transformer
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Comments
  • 无法引入ppim

    无法引入ppim


    AttributeError Traceback (most recent call last) in 1 import paddle ----> 2 from ppim import rednet_26 3 4 # 使用 PPIM whl 包加载模型 5 model, val_transforms = rednet_26(pretrained=True, return_transforms=True)

    ~.conda\envs\paddle\lib\site-packages\ppim_init_.py in ----> 1 import ppim.models as models 2 3 from ppim.models import * 4 from inspect import isfunction, isclass 5

    ~.conda\envs\paddle\lib\site-packages\ppim\models_init_.py in 3 from ppim.models.tnt import tnt_s, TNT 4 from ppim.models.t2t import t2t_vit_7, t2t_vit_10, t2t_vit_12, t2t_vit_14, t2t_vit_19, t2t_vit_24, t2t_vit_t_14, t2t_vit_t_19, t2t_vit_t_24, t2t_vit_14_384, t2t_vit_24_token_labeling ----> 5 from ppim.models.pvt import pvt_ti, pvt_s, pvt_m, pvt_l, PyramidVisionTransformer 6 from ppim.models.pit import pit_ti, pit_s, pit_xs, pit_b, pit_ti_distilled, pit_s_distilled, pit_xs_distilled, pit_b_distilled, PoolingTransformer, DistilledPoolingTransformer 7 from ppim.models.coat import coat_ti, coat_m, coat_lite_ti, coat_lite_m, CoaT

    ~.conda\envs\paddle\lib\site-packages\ppim\models\pvt.py in 5 import paddle.vision.transforms as T 6 ----> 7 import ppim.models.vit as vit 8 9 from ppim.models.common import add_parameter, load_model

    AttributeError: module 'ppim' has no attribute 'models'

    opened by hanknewbird 0
Releases(1.1.0)
Owner
AgentMaker
Focus on deep learning tools
AgentMaker
571 Dec 25, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023