Create animations for the optimization trajectory of neural nets

Overview

Animating the Optimization Trajectory of Neural Nets

PyPi Latest Release Release License

loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscape of your neural networks. It is based on PyTorch Lightning, please follow its suggested style if you want to add your own model.

Check out my article Visualizing Optimization Trajectory of Neural Nets for more examples and some intuitive explanations.

0. Installation

From PyPI:

pip install loss-landscape-anim

From source, you need Poetry. Once you cloned this repo, run the command below to install the dependencies.

poetry install

1. Basic Examples

With the provided spirals dataset and the default multilayer perceptron MLP model, you can directly call loss_landscape_anim to get a sample animated GIF like this:

# Use default MLP model and sample spirals dataset
loss_landscape_anim(n_epochs=300)

sample gif 1

Note: if you are using it in a notebook, don't forget to include the following at the top:

%matplotlib notebook

Here's another example – the LeNet5 convolutional network on the MNIST dataset. There are many levers you can tune: learning rate, batch size, epochs, frames per second of the GIF output, a seed for reproducible results, whether to load from a trained model, etc. Check out the function signature for more details.

bs = 16
lr = 1e-3
datamodule = MNISTDataModule(batch_size=bs, n_examples=3000)
model = LeNet(learning_rate=lr)

optim_path, loss_steps, accu_steps = loss_landscape_anim(
    n_epochs=10,
    model=model,
    datamodule=datamodule,
    optimizer="adam",
    giffps=15,
    seed=SEED,
    load_model=False,
    output_to_file=True,
    return_data=True,  # Optional return values if you need them
    gpus=1  # Enable GPU training if available
)

GPU training is supported. Just pass gpus into loss_landscape_anim if they are available.

The output of LeNet5 on the MNIST dataset looks like this:

sample gif 2

2. Why PCA?

To create a 2D visualization, the first thing to do is to pick the 2 directions that define the plane. In the paper Visualizing the Loss Landscape of Neural Nets, the authors argued why 2 random directions don't work and why PCA is much better. In summary,

  1. 2 random vectors in high dimensional space have a high probability of being orthogonal, and they can hardly capture any variation for the optimization path. The path’s projection onto the plane spanned by the 2 vectors will just look like random walk.

  2. If we pick one direction to be the vector pointing from the initial parameters to the final trained parameters, and another direction at random, the visualization will look like a straight line because the second direction doesn’t capture much variance compared to the first.

  3. If we use principal component analysis (PCA) on the optimization path and get the top 2 components, we can visualize the loss over the 2 orthogonal directions with the most variance.

For showing the most motion in 2D, PCA is preferred. If you need a quick recap on PCA, here's a minimal example you can go over under 3 minutes.

3. Random and Custom Directions

Although PCA is a good approach for picking the directions, if you need more control, the code also allows you to set any 2 fixed directions, either generated at random or handpicked.

For 2 random directions, set reduction_method to "random", e.g.

loss_landscape_anim(n_epochs=300, load_model=False, reduction_method="random")

For 2 fixed directions of your choosing, set reduction_method to "custom", e.g.

import numpy as np

n_params = ... # number of parameters your model has
u_gen = np.random.normal(size=n_params)
u = u_gen / np.linalg.norm(u_gen)
v_gen = np.random.normal(size=n_params)
v = v_gen / np.linalg.norm(v_gen)

loss_landscape_anim(
    n_epochs=300, load_model=False, reduction_method="custom", custom_directions=(u, v)
)

Here is an sample GIF produced by two random directions:

sample gif 3

By default, reduction_method="pca".

4. Custom Dataset and Model

  1. Prepare your DataModule. Refer to datamodule.py for examples.
  2. Define your custom model that inherits model.GenericModel. Refer to model.py for examples.
  3. Once you correctly setup your custom DataModule and model, call the function as shown below to train the model and plot the loss landscape animation.
bs = ...
lr = ...
datamodule = YourDataModule(batch_size=bs)
model = YourModel(learning_rate=lr)

loss_landscape_anim(
    n_epochs=10,
    model=model,
    datamodule=datamodule,
    optimizer="adam",
    seed=SEED,
    load_model=False,
    output_to_file=True
)

5. Comparing Different Optimizers

As mentioned in section 2, the optimization path usually falls into a very low-dimensional space, and its projection in other directions may look like random walk. On the other hand, different optimizers can take very different paths in the high dimensional space. As a result, it is difficult to pick 2 directions to effectively compare different optimizers.

In this example, I have adam, sgd, adagrad, rmsprop initialized with the same parameters. The two figures below share the same 2 random directions but are centered around different local minima. The first figure centers around the one Adam finds, the second centers around the one RMSprop finds. Essentially, the planes are 2 parallel slices of the loss landscape.

The first figure shows that when centering on the end of Adam's path, it looks like RMSprop is going somewhere with larger loss value. But that is an illusion. If you inspect the loss values of RMSprop, it actually finds a local optimum that has a lower loss than Adam's.

Same 2 directions centering on Adam's path:

adam

Same 2 directions centering on RMSprop's path:

rmsprop

This is a good reminder that the contours are just a 2D slice out of a very high-dimensional loss landscape, and the projections can't reflect the actual path.

However, we can see that the contours are convex no matter where it centers around in these 2 special cases. It more or less reflects that the optimizers shouldn't have a hard time finding a relatively good local minimum. To measure convexity more rigorously, the paper [1] mentioned a better method – using principal curvature, i.e. the eigenvalues of the Hessian. Check out the end of section 6 in the paper for more details.

Reference

[1] Visualizing the Loss Landscape of Neural Nets

You might also like...
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Racing line optimization algorithm in python that uses Particle Swarm Optimization.
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Learning trajectory representations using self-supervision and programmatic supervision.
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Owner
Logan Yang
Software engineer, machine learning practitioner
Logan Yang
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
5 Jan 05, 2023
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023