Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

Overview

TDY-CNN for Text-Independent Speaker Verification

Official implementation of

  • Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis
    by Seong-Hu Kim, Hyeonuk Nam, Yong-Hwa Park @ Human Lab, Mechanical Engineering Department, KAIST
    arXiv

Accepted paper in ICASSP 2022.

This code was written mainly with reference to VoxCeleb_trainer of paper 'In defence of metric learning for speaker recognition'.

Temporal Dynamic Convolutional Neural Network (TDY-CNN)

TDY-CNN efficiently applies adaptive convolution depending on time bins by changing the computation order as follows:

where x and y are input and output of TDY-CNN module which depends on frequency feature f and time feature t in time-frequency domain data. k-th basis kernel is convoluted with input and k-th bias is added. The results are aggregated using the attention weights which depends on time bins. K is the number of basis kernels, and σ is an activation function ReLU. The attention weight has a value between 0 and 1, and the sum of all basis kernels on a single time bin is 1 as the weights are processed by softmax.

Requirements and versions used

Python version of 3.7.10 is used with following libraries

  • pytorch == 1.8.1
  • pytorchaudio == 0.8.1
  • numpy == 1.19.2
  • scipy == 1.5.3
  • scikit-learn == 0.23.2

Dataset

We used VoxCeleb1 & 2 dataset in this paper. You can download the dataset by reffering to VoxCeleb1 and VoxCeleb1.

Training

You can train and save model in exps folder by running:

python trainSpeakerNet.py --model TDy_ResNet34_half --log_input True --encoder_type AVG --trainfunc softmaxproto --save_path exps/TDY_CNN_ResNet34 --nPerSpeaker 2 --batch_size 400

This implementation also provides accelerating training with distributed training and mixed precision training.

  • Use --distributed flag to enable distributed training and --mixedprec flag to enable mixed precision training.
    • GPU indices should be set before training : os.environ['CUDA_VISIBLE_DEVICES'] ='0,1,2,3' in trainSpeakernet.py.

Results:

Network #Parm EER (%) C_det (%)
TDY-VGG-M 71.2M 3.04 0.237
TDY-ResNet-34(×0.25) 13.3M 1.58 0.116
TDY-ResNet-34(×0.5) 51.9M 1.48 0.118

  • This result is low-dimensional t-SNE projection of frame-level speaker embed-dings of MHRM0 and FDAS1 using (a) baseline model ResNet-34(×0.25) and (b) TDY-ResNet-34(×0.25). Left column represents embeddings for different speakers, and right column represents em-beddings for different phoneme classes.

  • Embeddings by TDY-ResNet-34(×0.25) are closely gathered regardless of phoneme groups. It shows that the temporal dynamic model extracts consistent speaker information regardless of phonemes.

Pretrained models

There are pretrained models in folder pretrained_model.

For example, you can check 1.4786 of EER by running following script using TDY-ResNet-34(×0.5).

python trainSpeakerNet.py --eval --model TDy_ResNet34_half --log_input True --encoder_type AVG --trainfunc softmaxproto --save_path exps/test --eval_frames 400 --initial_model pretrained_model/pretrained_TDy_ResNet34_half.model

Citation

@article{kim2021tdycnn,
  title={Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis},
  author={Kim, Seong-Hu and Nam, Hyeonuk and Park, Yong-Hwa},
  journal={arXiv preprint arXiv:2110.03213},
  year={2021}
}

Please contact Seong-Hu Kim at [email protected] for any query.

Owner
Seong-Hu Kim
Seong-Hu Kim
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
202 Jan 06, 2023
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023