A Lightweight Experiment & Resource Monitoring Tool 📺

Overview

Lightweight Experiment & Resource Monitoring 📺

Pyversions PyPI version Code style: black Colab codecov

"Did I already run this experiment before? How many resources are currently available on my cluster?" If these are common questions you encounter during your daily life as a researcher, then mle-monitor is made for you. It provides a lightweight API for tracking your experiments using a pickle protocol database (e.g. for hyperparameter searches and/or multi-configuration/multi-seed runs). Furthermore, it comes with built-in resource monitoring on Slurm/Grid Engine clusters and local machines/servers.

mle-monitor provides three core functionalities:

  • MLEProtocol: A composable protocol database API for ML experiments.
  • MLEResource: A tool for obtaining server/cluster usage statistics.
  • MLEDashboard: A dashboard visualizing resource usage & experiment protocol.

To get started I recommend checking out the colab notebook and an example workflow.

drawing

MLEProtocol: Keeping Track of Your Experiments 📝

from mle_monitor import MLEProtocol

# Load protocol database or create new one -> print summary
protocol_db = MLEProtocol("mle_protocol.db", verbose=False)
protocol_db.summary(tail=10, verbose=True)

# Draft data to store in protocol & add it to the protocol
meta_data = {
    "purpose": "Grid search",  # Purpose of experiment
    "project_name": "MNIST",  # Project name of experiment
    "experiment_type": "hyperparameter-search",  # Type of experiment
    "experiment_dir": "experiments/logs",  # Experiment directory
    "num_total_jobs": 10,  # Number of total jobs to run
    ...
}
new_experiment_id = protocol_db.add(meta_data)

# ... train your 10 (pseudo) networks/complete respective jobs
for i in range(10):
    protocol_db.update_progress_bar(new_experiment_id)

# Wrap up an experiment (store completion time, etc.)
protocol_db.complete(new_experiment_id)

The meta data can contain the following keys:

Search Type Description Default
purpose Purpose of experiment 'None provided'
project_name Project name of experiment 'default'
exec_resource Resource jobs are run on 'local'
experiment_dir Experiment log storage directory 'experiments'
experiment_type Type of experiment to run 'single'
base_fname Main code script to execute 'main.py'
config_fname Config file path of experiment 'base_config.yaml'
num_seeds Number of evaluations seeds 1
num_total_jobs Number of total jobs to run 1
num_job_batches Number of jobs in single batch 1
num_jobs_per_batch Number of sequential job batches 1
time_per_job Expected duration: days-hours-minutes '00:01:00'
num_cpus Number of CPUs used in job 1
num_gpus Number of GPUs used in job 0

Additionally you can synchronize the protocol with a Google Cloud Storage (GCS) bucket by providing cloud_settings. In this case also the results stored in experiment_dir will be uploaded to the GCS bucket, when you call protocol.complete().

# Define GCS settings - requires 'GOOGLE_APPLICATION_CREDENTIALS' env var.
cloud_settings = {
    "project_name": "mle-toolbox",  # GCP project name
    "bucket_name": "mle-protocol",  # GCS bucket name
    "use_protocol_sync": True,  # Whether to sync the protocol to GCS
    "use_results_storage": True,  # Whether to sync experiment_dir to GCS
}
protocol_db = MLEProtocol("mle_protocol.db", cloud_settings, verbose=True)

The MLEResource: Keeping Track of Your Resources 📉

On Your Local Machine

from mle_monitor import MLEResource

# Instantiate local resource and get usage data
resource = MLEResource(resource_name="local")
resource_data = resource.monitor()

On a Slurm Cluster

resource = MLEResource(
    resource_name="slurm-cluster",
    monitor_config={"partitions": ["<partition-1>", "<partition-2>"]},
)

On a Grid Engine Cluster

resource = MLEResource(
    resource_name="sge-cluster",
    monitor_config={"queues": ["<queue-1>", "<queue-2>"]}
)

The MLEDashboard: Dashboard Visualization 🎞️

from mle_monitor import MLEDashboard

# Instantiate dashboard with protocol and resource
dashboard = MLEDashboard(protocol, resource)

# Get a static snapshot of the protocol & resource utilisation printed in console
dashboard.snapshot()

# Run monitoring in while loop - dashboard
dashboard.live()

Installation

A PyPI installation is available via:

pip install mle-monitor

Alternatively, you can clone this repository and afterwards 'manually' install it:

git clone https://github.com/mle-infrastructure/mle-monitor.git
cd mle-monitor
pip install -e .

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue 🤗 .

You might also like...
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

Punctuation Restoration using Transformer Models for High-and Low-Resource Languages
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Real-Time Social Distance Monitoring tool using Computer Vision
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

Attendance Monitoring with Face Recognition using Python
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Comments
  • Is the dashboard pooling squeue?

    Is the dashboard pooling squeue?

    Hey, Thanks for publishing the library, the dashboard looks great!

    However, I was a bit concerned to see you are using squeue since the official documentation says

    "Executing squeue sends a remote procedure call to slurmctld. If enough calls from squeue or other Slurm client commands that send remote procedure calls to the slurmctld daemon come in at once, it can result in a degradation of performance of the slurmctld daemon, possibly resulting in a denial of service.

    Do not run squeue or other Slurm client commands that send remote procedure calls to slurmctld from loops in shell scripts or other programs. Ensure that programs limit calls to squeue to the minimum necessary for the information you are trying to gather."

    Do you poll squeue or is there some other, smarter management of it that I missed?

    Thanks, Eliahu

    opened by eliahuhorwitz 0
Releases(v0.0.1)
  • v0.0.1(Dec 9, 2021)

    Basic API for MLEProtocol, MLEResource & MLEDashboard:

    from mle_monitor import MLEProtocol
    
    # Load protocol database or create new one -> print summary
    protocol_db = MLEProtocol("mle_protocol.db", verbose=False)
    protocol_db.summary(tail=10, verbose=True)
    
    # Draft data to store in protocol & add it to the protocol
    meta_data = {
        "purpose": "Grid search",  # Purpose of experiment
        "project_name": "MNIST",  # Project name of experiment
        "experiment_type": "hyperparameter-search",  # Type of experiment
        "experiment_dir": "experiments/logs",  # Experiment directory
        "num_total_jobs": 10,  # Number of total jobs to run
        ...
    }
    new_experiment_id = protocol_db.add(meta_data)
    
    # ... train your 10 (pseudo) networks/complete respective jobs
    for i in range(10):
        protocol_db.update_progress_bar(new_experiment_id)
    
    # Wrap up an experiment (store completion time, etc.)
    protocol_db.complete(new_experiment_id)
    
    Source code(tar.gz)
    Source code(zip)
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
Learning from graph data using Keras

Steps to run = Download the cora dataset from this link : https://linqs.soe.ucsc.edu/data unzip the files in the folder input/cora cd code python eda

Mansar Youness 64 Nov 16, 2022
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022