HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

Overview

HomoInterpGAN

Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral)

Installation

The implementation is based on pytorch. Our model is trained and tested on version 1.0.1.post2. Please install relevant packages based on your own environment.

All other required packages are listed in "requirements.txt". Please run

pip install -r requirements.txt

to install these packages.

Dataset

Download the "Align&Cropped Images" of the CelebA dataset. If the original link is unavailable, you can also download it here.

Training

Firstly, cd to the project directory and run

export PYTHONPATH=./:$PYTHONPATH

before executing any script.

To train a model on CelebA, please run

python run.py train --data_dir CELEBA_ALIGNED_DIR -sp checkpoints/CelebA -bs 128 -gpu 0,1,2,3 

Key arguments

--data_dir: The path of the celeba_aligned images. 
-sp: The trained model and logs, intermediate results are stored in this directory.
-bs: Batch size.
-gpu: The GPU index.
--attr: This specifies the target attributes. Note that we concatenate multiple attributes defined in CelebA as our grouped attribute. We use "@" to group multiple multiple attributes to a grouped one (e.g., [email protected] forms a "expression" attriute). We use "," to split different grouped attributes. See the default argument of "run.py" for details. 

Testing

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8

This conducts attribute manipulation with reference samples selected in CelebA dataset. The reference samples are selected based on their attributes (--filter_target_attr), and the interpolation path should be chosen accordingly.

Key arguments:

1, the effect is exaggerated. -bs: the batch size of the testing images. -n_ref: the number of images used as reference. ">
-mp: the model path. The checkpoints of encoder, interpolator and decoder should be stored in this path.
-sp: the save path of the results.
--filter_target_attr: This specifies the attributes of the reference images. The attribute names can be found in "info/attribute_names.txt". We can specify one attribute (e.g., "Smiling") or several attributes (e.g., "[email protected]_Slightly_Open" will filter mouth open smiling reference images). To filter negative samples, add "NOT" as prefix to the attribute names, such as "NOTSmiling", "[email protected]_Slightly_Open".
--branch_idx: This specifies the branch index of the interpolator. Each branch handles a group of attribute. Note that the physical meaning of each branch is specified by "--attr" during testing. 
-s: The strength of the manipulation. Range of [0, 2] is suggested. If s>1, the effect is exaggerated.
-bs: the batch size of the testing images. 
-n_ref: the number of images used as reference. 

Testing on unaligned images

Note the the performance could degenerate if the testing image is not well aligned. Thus we also provide a tool for face alignment. Please place all your testing images to a folder (e.g., examples/original), then run

python facealign/align_all.py examples/original examples/aligned

to align testing images to an samples in CelebA. Then you can run manipulation by

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8 --test_folder examples/aligned

Note that an additional argument "--test_folder" is specified.

Pretrained model

We have also provided a pretrained model here. It is trained with default parameters. The meaning of each branch of the interpolator is listed bellow.

Branch index Grouped attribute Corresponding labels on CelebA
1 Expression Mouth_Slightly_Open, Smiling
2 Gender trait Male, No_Beard, Mustache, Goatee, Sideburns
3 Hair color Black_Hair, Blond_Hair, Brown_Hair, Gray_Hair
4 Hair style Bald, Receding_Hairline, Bangs
5 Age Young

Updates

  • Jun 17, 2019: It is observed that the face alignment tool is not perfect, and the results of "Testing on unaligned images" does not perform as well as results in CelebA dataset. To make the model less sensitive of the alignment issue, we add random shifting in center_crop during training. The shifting range can be controlled by "--random_crop_bias". We have updated the pretarined model by fine-tuning it with "random_crop_bias=10", which leads to better results in unaligned images.

Reference

Ying-Cong Chen, Xiaogang Xu, Zhuotao Tian, Jiaya Jia, "Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation" , Computer Vision and Pattern Recognition (CVPR), 2019 PDF

@inproceedings{chen2019Homomorphic,
  title={Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation},
  author={Chen, Ying-Cong and Xu, Xiaogang and Tian, Zhuotao and Jia, Jiaya},
  booktitle={CVPR},
  year={2019}
}

Contect

Please contact [email protected] if you have any question or suggestion.

Owner
Ying-Cong Chen
Ying-Cong Chen
Learned image compression

Overview Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression. We first release the code for Variationa

Jiaheng Liu 163 Dec 04, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Facebook Research 213 Dec 17, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021