HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

Overview

HomoInterpGAN

Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral)

Installation

The implementation is based on pytorch. Our model is trained and tested on version 1.0.1.post2. Please install relevant packages based on your own environment.

All other required packages are listed in "requirements.txt". Please run

pip install -r requirements.txt

to install these packages.

Dataset

Download the "Align&Cropped Images" of the CelebA dataset. If the original link is unavailable, you can also download it here.

Training

Firstly, cd to the project directory and run

export PYTHONPATH=./:$PYTHONPATH

before executing any script.

To train a model on CelebA, please run

python run.py train --data_dir CELEBA_ALIGNED_DIR -sp checkpoints/CelebA -bs 128 -gpu 0,1,2,3 

Key arguments

--data_dir: The path of the celeba_aligned images. 
-sp: The trained model and logs, intermediate results are stored in this directory.
-bs: Batch size.
-gpu: The GPU index.
--attr: This specifies the target attributes. Note that we concatenate multiple attributes defined in CelebA as our grouped attribute. We use "@" to group multiple multiple attributes to a grouped one (e.g., [email protected] forms a "expression" attriute). We use "," to split different grouped attributes. See the default argument of "run.py" for details. 

Testing

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8

This conducts attribute manipulation with reference samples selected in CelebA dataset. The reference samples are selected based on their attributes (--filter_target_attr), and the interpolation path should be chosen accordingly.

Key arguments:

1, the effect is exaggerated. -bs: the batch size of the testing images. -n_ref: the number of images used as reference. ">
-mp: the model path. The checkpoints of encoder, interpolator and decoder should be stored in this path.
-sp: the save path of the results.
--filter_target_attr: This specifies the attributes of the reference images. The attribute names can be found in "info/attribute_names.txt". We can specify one attribute (e.g., "Smiling") or several attributes (e.g., "[email protected]_Slightly_Open" will filter mouth open smiling reference images). To filter negative samples, add "NOT" as prefix to the attribute names, such as "NOTSmiling", "[email protected]_Slightly_Open".
--branch_idx: This specifies the branch index of the interpolator. Each branch handles a group of attribute. Note that the physical meaning of each branch is specified by "--attr" during testing. 
-s: The strength of the manipulation. Range of [0, 2] is suggested. If s>1, the effect is exaggerated.
-bs: the batch size of the testing images. 
-n_ref: the number of images used as reference. 

Testing on unaligned images

Note the the performance could degenerate if the testing image is not well aligned. Thus we also provide a tool for face alignment. Please place all your testing images to a folder (e.g., examples/original), then run

python facealign/align_all.py examples/original examples/aligned

to align testing images to an samples in CelebA. Then you can run manipulation by

python run.py attribute_manipulation -mp checkpoints/CelebA -sp checkpoints/CelebA/test/Smiling  --filter_target_attr Smiling -s 1 --branch_idx 0 --n_ref 5 -bs 8 --test_folder examples/aligned

Note that an additional argument "--test_folder" is specified.

Pretrained model

We have also provided a pretrained model here. It is trained with default parameters. The meaning of each branch of the interpolator is listed bellow.

Branch index Grouped attribute Corresponding labels on CelebA
1 Expression Mouth_Slightly_Open, Smiling
2 Gender trait Male, No_Beard, Mustache, Goatee, Sideburns
3 Hair color Black_Hair, Blond_Hair, Brown_Hair, Gray_Hair
4 Hair style Bald, Receding_Hairline, Bangs
5 Age Young

Updates

  • Jun 17, 2019: It is observed that the face alignment tool is not perfect, and the results of "Testing on unaligned images" does not perform as well as results in CelebA dataset. To make the model less sensitive of the alignment issue, we add random shifting in center_crop during training. The shifting range can be controlled by "--random_crop_bias". We have updated the pretarined model by fine-tuning it with "random_crop_bias=10", which leads to better results in unaligned images.

Reference

Ying-Cong Chen, Xiaogang Xu, Zhuotao Tian, Jiaya Jia, "Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation" , Computer Vision and Pattern Recognition (CVPR), 2019 PDF

@inproceedings{chen2019Homomorphic,
  title={Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation},
  author={Chen, Ying-Cong and Xu, Xiaogang and Tian, Zhuotao and Jia, Jiaya},
  booktitle={CVPR},
  year={2019}
}

Contect

Please contact [email protected] if you have any question or suggestion.

Owner
Ying-Cong Chen
Ying-Cong Chen
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022