Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

Overview

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

Overall pipeline of OCN.

Paper Link: [arXiv] [AAAI official paper]

If you find our work or the codebase inspiring and useful to your research, please cite

@article{yuan2022OCN_HOI,
  title={Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics},
  author={Yuan, Hangjie and Wang, Mang and Ni, Dong and Xu, Liangpeng},
  journal={arXiv preprint arXiv:2202.00259},
  year={2022}
}

Dataset preparation

1. HICO-DET

HICO-DET dataset can be downloaded here. After finishing downloading, unpack the tarball (hico_20160224_det.tar.gz) to the data directory.

Instead of using the original annotations files, we use the annotation files provided by the PPDM authors. The annotation files can be downloaded from here. The downloaded annotation files have to be placed as follows.

qpic
 |─ data
 │   └─ hico_20160224_det
 |       |─ annotations
 |       |   |─ trainval_hico.json
 |       |   |─ test_hico.json
 |       |   └─ corre_hico.npy
 :       :

2. V-COCO

First clone the repository of V-COCO from here, and then follow the instruction to generate the file instances_vcoco_all_2014.json. Next, download the prior file prior.pickle from here. Place the files and make directories as follows.

qpic
 |─ data
 │   └─ v-coco
 |       |─ data
 |       |   |─ instances_vcoco_all_2014.json
 |       |   :
 |       |─ prior.pickle
 |       |─ images
 |       |   |─ train2014
 |       |   |   |─ COCO_train2014_000000000009.jpg
 |       |   |   :
 |       |   └─ val2014
 |       |       |─ COCO_val2014_000000000042.jpg
 |       |       :
 |       |─ annotations
 :       :

For our implementation, the annotation file have to be converted to the HOIA format. The conversion can be conducted as follows.

PYTHONPATH=data/v-coco \
        python convert_vcoco_annotations.py \
        --load_path data/v-coco/data \
        --prior_path data/v-coco/prior.pickle \
        --save_path data/v-coco/annotations

Note that only Python2 can be used for this conversion because vsrl_utils.py in the v-coco repository shows a error with Python3.

V-COCO annotations with the HOIA format, corre_vcoco.npy, test_vcoco.json, and trainval_vcoco.json will be generated to annotations directory.

Dependencies and Training

To simplify the steps, we combine the installation of externel dependencies and training into one '.sh' file. You can directly run the codes after rightly preparing the dataset.

# Training on HICO-DET
bash train_hico.sh
# Training on V-COCO
bash train_vcoco.sh

Note that you can refer to the publicly available codebase for the preparation of two datasets.

Pre-trained parameters

OCN uses COCO pretrained models for fair comparisons with previous methods. The pretrained models can be downloaded from DETR repository.

For HICO-DET, you can convert the pre-trained parameters with the following command.

python convert_parameters.py \
        --load_path /PATH/TO/PRETRAIN \
        --save_path /PATH/TO/SAVE

For V-COCO, you can convert the pre-trained parameters with the following command.

python convert_parameters.py \
        --load_path /PATH/TO/PRETRAIN \
        --save_path /PATH/TO/SAVE \
        --dataset vcoco \

Evaluation

The mAP on HICO-DET under the Full set, Rare set and Non-Rare Set will be reported during the training process. Or you can evaluate the performance using commands below:

python main.py \
    --pretrained /PATH/TO/PRETRAINED_MODEL \
    --output_dir /PATH/TO/OUTPUT \
    --hoi \
    --dataset_file hico \
    --hoi_path /PATH/TO/data/hico_20160224_det \
    --num_obj_classes 80 \
    --num_verb_classes 117 \
    --backbone resnet101 \
    --num_workers 4 \
    --batch_size 4 \
    --exponential_hyper 1 \
    --exponential_loss \
    --semantic_similar_coef 1 \
    --verb_loss_type focal \
    --semantic_similar \
    --OCN \
    --eval \

The results for the official evaluation of V-COCO must be obtained by the generated pickle file of detection results.

python generate_vcoco_official.py \
        --param_path /PATH/TO/CHECKPOINT \
        --save_path /PATH/TO/SAVE/vcoco.pickle \
        --hoi_path /PATH/TO/VCOCO/data/v-coco \
        --batch_size 4 \
        --OCN \

Then you should run following codes after modifying the path to get the final performance:

python datasets/vsrl_eval.py

Results

Below we present the results and links for downloading corresponding parameters and logs: (The checkpoints can produce higher results than what are reported in the paper.) We will soon update this table.

Owner
A Ph.D. candidate and a realistic idealist.
Implementation of hyperparameter optimization/tuning methods for machine learning & deep learning models

Hyperparameter Optimization of Machine Learning Algorithms This code provides a hyper-parameter optimization implementation for machine learning algor

Li Yang 1.1k Dec 19, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Contrastive Multi-View Representation Learning on Graphs

Contrastive Multi-View Representation Learning on Graphs This work introduces a self-supervised approach based on contrastive multi-view learning to l

Kaveh 208 Dec 23, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022