Combining Diverse Feature Priors

Related tags

Deep Learningcopriors
Overview

Combining Diverse Feature Priors

This repository contains code for reproducing the results of our paper.

Paper: https://arxiv.org/abs/2110.08220

Blog Post: http://gradientscience.org/copriors/

Important files:

Scripts:
  pretrain_model.py: a script to pre-train the models on just the labeled data
  cotrain.py: a script to co-train pretrained model(s)
  sweep_final_models.py: a script to evaluate intermediate eras for a previously run cotrain
  
File Structure:
  datasets:
    datasets.py: the definition of the labeled/unlabeled/validation/test sets for our datasets
    transforms.py: describes the different prior transforms and spurious tinting
    co_training.py: contains the logic for model pre-training and co-training
   models:
    bagnet_custom.py: the architecture for the bagnets used in this paper
    model_utils.py: utilities for loading and building models

To generate the pre-trained priors, run:

python pretrain_model.py --dataset <DATASET NAME> --data-path <DATA PATH> --use_val --out-dir <OUTPUT PATH NAME> --arch <ARCHITECTURE NAME> --epochs 300 --lr <LR> --step_lr <STEP LR> --step_lr_gamma <STEP LR GAMMA> --additional-transform <TRANSFORM TYPE>

datasets: STLSub10, cifarsmallsub, celebaskewed 
data-path: use torchvision datasets from https://pytorch.org/vision/stable/index.html
use-val: determines whether to use validation or test set for tensorboard metrics
arch: vgg16_bn, bagnetcustom32 (bagnet for CIFAR), bagnetcustom96thin (bagnet for celeba/stl10)
lr, step-lr, step-lr-gamma are hyperparameters who's exact values can be found in our appendix.
additional-transform: which prior to use. possibilities are NONE, CANNY, SOBEL (use NONE and a bagnet architecture for the bagnet prior)

Add --spurious TINT to train with a tint (as in the tinted STL-10 experiments)

After generating the priors, the models can be self (include one prior directory) or co-trained (include both prior directories) by running:

python cotrain.py --dataset <DATASET NAME> --data-path <DATA PATH> --out-dir <OUTPUT PATH> --input-dirs <PRIOR DIRECTORY 1> --input-dirs <PRIOR DIRECTORY 2> --epochs_per_era 300 --fraction 0.05 --eras 20 --epochs 400 --arch vgg16_bn --additional-transform NONE --lr <LR> --step_lr <STEP LR> --step_lr_gamma <STEP LR GAMMA> --strategy STANDARD_CONSTANT 

This command will self/co-train the input prior directories, saving a checkpoint for each era, and then finally train a standard model on the pseudo-labels after the eras are complete.

To use the pure co-training strategy, add --pure
To use tinting as in the STL-10 tinting experiments
Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
PyTorch implementation of UNet++ (Nested U-Net).

PyTorch implementation of UNet++ (Nested U-Net) This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architect

4ui_iurz1 642 Jan 04, 2023
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

CapsNet-Tensorflow A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules Notes: The current version

Huadong Liao 3.8k Dec 29, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022