Implementation of Online Label Smoothing in PyTorch

Overview

Online Label Smoothing

Build Status

Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing.

Introduction

As the abstract states, OLS is a strategy to generates soft labels based on the statistics of the model prediction for the target category. The core idea is that instead of using fixed soft labels for every epoch, we go updating them based on the stats of correct predicted samples.

More details and experiment results can be found in the paper.

Usage

Usage of OnlineLabelSmoothing is pretty straightforward. Just use it as you would use PyTorch CrossEntropyLoss. The only thing that is different is that at the end of the epoch you should call OnlineLabelSmoothing.next_epoch(). It updates the OnlineLabelSmoothing.supervise matrix that will be used in the next epoch for the soft labels.

Standalone

from ols import OnlineLabelSmoothing
import torch

k = 4  # Number of classes
b = 32  # Batch size
criterion = OnlineLabelSmoothing(alpha=0.5, n_classes=k, smoothing=0.1)
logits = torch.randn(b, k)  # Predictions
y = torch.randint(k, (b,))  # Ground truth

loss = criterion(logits, y)

PyTorch

from ols import OnlineLabelSmoothing

criterion = OnlineLabelSmoothing(alpha=..., n_classes=...)
for epoch in range(...):  # loop over the dataset multiple times
    for i, data in enumerate(...):
        inputs, labels = data
        # zero the parameter gradients
        optimizer.zero_grad()
        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch} finished!')
    # Update the soft labels for next epoch
    criterion.next_epoch()

PyTorchLightning

With PL you can simply call next_epoch() at the end of the epoch with:

import pytorch_lightning as pl
from ols import OnlineLabelSmoothing


class LitClassification(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.criterion = OnlineLabelSmoothing(alpha=..., n_classes=...)

    def forward(self, x):
        pass

    def configure_optimizers(self):
        pass

    def training_step(self, train_batch, batch_idx):
        pass

    def on_train_epoch_end(self, **kwargs):
        self.criterion.next_epoch()

Installation

pip install -r requirements.txt

Citation

@misc{zhang2020delving,
      title={Delving Deep into Label Smoothing}, 
      author={Chang-Bin Zhang and Peng-Tao Jiang and Qibin Hou and Yunchao Wei and Qi Han and Zhen Li and Ming-Ming Cheng},
      year={2020},
      eprint={2011.12562},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023