Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Related tags

Deep LearningDCVC
Overview

Introduction

Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Prerequisites

  • Python 3.8 and conda, get Conda
  • CUDA 11.0
  • Environment
    conda create -n $YOUR_PY38_ENV_NAME python=3.8
    conda activate $YOUR_PY38_ENV_NAME
    
    pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    python -m pip install -r requirements.txt
    

Test dataset

Currenlty the spatial resolution of video needs to be cropped into the integral times of 64.

The dataset format can be seen in dataset_config_example.json.

For example, one video of HEVC Class B can be prepared as:

  • Crop the original YUV via ffmpeg:
    ffmpeg -pix_fmt yuv420p  -s 1920x1080 -i  BasketballDrive_1920x1080_50.yuv -vf crop=1920:1024:0:0 BasketballDrive_1920x1024_50.yuv
    
  • Make the video path:
    mkdir BasketballDrive_1920x1024_50
    
  • Convert YUV to PNG:
    ffmpeg -pix_fmt yuv420p -s 1920x1024 -i BasketballDrive_1920x1024_50.yuv   -f image2 BasketballDrive_1920x1024_50/im%05d.png
    

At last, the folder structure of dataset is like:

/media/data/HEVC_B/
    * BQTerrace_1920x1024_60/
        - im00001.png
        - im00002.png
        - im00003.png
        - ...
    * BasketballDrive_1920x1024_50/
        - im00001.png
        - im00002.png
        - im00003.png
        - ...
    * ...
/media/data/HEVC_D
/media/data/HEVC_C/
...

Pretrained models

  • Download CompressAI models

    cd checkpoints/
    python download_compressai_models.py
    cd ..
    
  • Download DCVC models and put them into /checkpoints folder.

Test DCVC

Example of test the PSNR model:

python test_video.py --i_frame_model_name cheng2020-anchor  --i_frame_model_path  checkpoints/cheng2020-anchor-3-e49be189.pth.tar  checkpoints/cheng2020-anchor-4-98b0b468.pth.tar   checkpoints/cheng2020-anchor-5-23852949.pth.tar   checkpoints/cheng2020-anchor-6-4c052b1a.pth.tar  --test_config     dataset_config_example.json  --cuda true --cuda_device 0,1,2,3   --worker 4   --output_json_result_path  DCVC_result_psnr.json    --model_type psnr  --recon_bin_path recon_bin_folder_psnr --model_path checkpoints/model_dcvc_quality_0_psnr.pth  checkpoints/model_dcvc_quality_1_psnr.pth checkpoints/model_dcvc_quality_2_psnr.pth checkpoints/model_dcvc_quality_3_psnr.pth

Example of test the MSSSIM model:

python test_video.py --i_frame_model_name bmshj2018-hyperprior  --i_frame_model_path  checkpoints/bmshj2018-hyperprior-ms-ssim-3-92dd7878.pth.tar checkpoints/bmshj2018-hyperprior-ms-ssim-4-4377354e.pth.tar    checkpoints/bmshj2018-hyperprior-ms-ssim-5-c34afc8d.pth.tar    checkpoints/bmshj2018-hyperprior-ms-ssim-6-3a6d8229.pth.tar   --test_config   dataset_config_example.json  --cuda true --cuda_device 0,1,2,3   --worker 4   --output_json_result_path  DCVC_result_msssim.json  --model_type msssim  --recon_bin_path recon_bin_folder_msssim --model_path checkpoints/model_dcvc_quality_0_msssim.pth checkpoints/model_dcvc_quality_1_msssim.pth checkpoints/model_dcvc_quality_2_msssim.pth checkpoints/model_dcvc_quality_3_msssim.pth

It is recommended that the --worker number is equal to your GPU number.

Acknowledgement

The implementation is based on CompressAI and PyTorchVideoCompression. The model weights of intra coding come from CompressAI.

Citation

If you find this work useful for your research, please cite:

@article{li2021deep,
  title={Deep Contextual Video Compression},
  author={Li, Jiahao and Li, Bin and Lu, Yan},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

[NeurIPS 2021] Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects YouTube | arXiv Prerequisites Kaolin is available here:

Denys Rozumnyi 107 Dec 26, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022