Official repository for Natural Image Matting via Guided Contextual Attention

Overview

GCA-Matting: Natural Image Matting via Guided Contextual Attention

The source codes and models of Natural Image Matting via Guided Contextual Attention which will appear in AAAI-20.

Matting results on test data from alphamatting.com with trimap-user.

Requirements

Packages:

  • torch >= 1.1
  • tensorboardX
  • numpy
  • opencv-python
  • toml
  • easydict
  • pprint

GPU memory >= 8GB for inference on Adobe Composition-1K testing set

Models

The models pretrained on Adobe Image Matting Dataset are covered by Adobe Deep Image Mattng Dataset License Agreement and can only be used and distributed for noncommercial purposes.

Model Name Training Data File Size MSE SAD Grad Conn
ResNet34_En_nomixup ISLVRC 2012 166 MB N/A N/A N/A N/A
gca-dist Adobe Matting Dataset 96.5 MB 0.0091 35.28 16.92 32.53
gca-dist-all-data Adobe Matting Dataset
+ Composition-1K
96.5 MB - - - -
  • ResNet34_En_nomixup: Model of the customized ResNet-34 backbone trained on ImageNet. Save to ./pretrain/. The training codes of ResNet34_En_nomixup and more variants will be released as an independent repository later. You need this checkpoint only if you want to train your own matting model.
  • gca-dist: Model of the GCA Matting in Table 2 in the paper. Save to ./checkpoints/gca-dist/.
  • gca-dist-all-data: Model of the GCA Matting trained on both Adobe Image Matting Dataset and the Composition-1K testing set for alphamatting.com online benchmark. Save to ./checkpoints/gca-dist-all-data/.

(We removed optimizer state_dict from gca-dist.pth and gca-dist-all-data.pth to save space. So you cannot resume the training from these two models.)

Run a Demo on alphamatting.com Testing Set

python demo.py \
--config=config/gca-dist-all-data.toml \
--checkpoint=checkpoints/gca-dist-all-data/gca-dist-all-data.pth \
--image-dir=demo/input_lowres \
--trimap-dir=demo/trimap_lowres/Trimap3 \
--output=demo/pred/Trimap3/

This will load the configuration from config and save predictions in output/config_checkpoint/*. You can reproduce our alphamatting.com submission by this command.

Train and Evaluate on Adobe Image Matting Dataset

Data Preparation

Since each ground truth alpha image in Composition-1K is shared by 20 merged images, we first copy and rename these alpha images to have the same name as their trimaps. If your ground truth images are in ./Combined_Dataset/Test_set/Adobe-licensed images/alpha, run following command:

./copy_testing_alpha.sh Combined_Dataset/Test_set/Adobe-licensed\ images

New alpha images will be generated in Combined_Dataset/Test_set/Adobe-licensed images/alpha_copy

Configuration

TOML files are used as configurations in ./config/. You can find the definition and options in ./utils/config.py.

Training

Default training requires 4 GPUs with 11GB memory, and the batch size is 10 for each GPU. First, you need to set your training and validation data path in configuration and dataloader will merge training images on-the-fly:

[data]
train_fg = ""
train_alpha = ""
train_bg = ""
test_merged = ""
test_alpha = ""
test_trimap = ""

You can train the model by

./train.sh

or

OMP_NUM_THREADS=2 python -m torch.distributed.launch \
--nproc_per_node=4 main.py \
--config=config/gca-dist.toml

For single GPU training, set dist=false in your *.toml and run

python main.py --config=config/*.toml

Evaluation

To evaluate our model or your own model on Composition-1K, set the path of Composition-1K testing and model name in the configuration file *.toml:

[test]
merged = "./data/test/merged"
alpha = "./data/test/alpha_copy"
trimap = "./data/test/trimap"
# this will load ./checkpoint/*/gca-dist.pth
checkpoint = "gca-dist" 

and run the command:

./test.sh

or

python main.py \
--config=config/gca-dist.toml \
--phase=test

The predictions will be save to** ./prediction by default, and you can evaluate the results by the MATLAB file ./DIM_evaluation_code/evaluate.m in which the evaluate functions are provided by Deep Image Matting. Please do not report the quantitative results calculated by our python code like ./utils/evaluate.py or this test.sh in your paper or project. The Grad and Conn functions of our reimplementation are not exactly the same as MATLAB version.

Citation

If you find this work or code useful for your research, please cite:

@inproceedings{li2020natural,
  title={Natural image matting via guided contextual attention},
  author={Li, Yaoyi and Lu, Hongtao},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={34},
  pages={11450--11457},
  year={2020}
}
Owner
Li Yaoyi
Li Yaoyi
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Yulei Niu 94 Dec 03, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022