The official implementation of the paper, "SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning"

Overview

SubTab:

Author: Talip Ucar ([email protected])

The official implementation of the paper,

SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning

PWC

Table of Contents:

  1. Model
  2. Environment
  3. Data
  4. Configuration
  5. Training and Evaluation
  6. Adding New Datasets
  7. Results
  8. Experiment tracking
  9. Citing the paper
  10. Citing this repo

Model

SubTab

Click for a slower version of the animation

SubTab

Environment

We used Python 3.7 for our experiments. The environment can be set up by following three steps:

pip install pipenv             # To install pipenv if you don't have it already
pipenv install --skip-lock     # To install required packages. 
pipenv shell                   # To activate virtual env

If the second step results in issues, you can install packages in Pipfile individually by using pip i.e. "pip install package_name".

Data

MNIST dataset is already provided to demo the framework. For your own dataset, follow the instructions in Adding New Datasets.

Configuration

There are two types of configuration files:

1. runtime.yaml
2. mnist.yaml
  1. runtime.yaml is a high-level configuration file used by all datasets to:

    • define the random seed
    • turn on/off mlflow (Default: False)
    • turn on/off python profiler (Default: False)
    • set data directory
    • set results directory
  2. Second configuration file is dataset-specific and is used to configure the architecture of the model, loss functions, and so on.

    • For example, we set up a configuration file for MNIST dataset with the same name. Please note that the name of the configuration file should be same as name of the dataset with all letters in lowercase.
    • We can have configuration files for other datasets such as tcga.yaml and income.yaml for tcga and income datasets respectively.

Training and Evaluation

You can train and evaluate the model by using:

python train.py # For training
python eval.py  # For evaluation
  • train.py will also run evaluation at the end of the training.
  • You can also run evaluation separately by using eval.py.

Adding New Datasets

For each new dataset, you can use the following steps:

  1. Provide a _load_dataset_name() function, similar to MNIST load function

    • For example, you can add _load_tcga() for tcga dataset, or _load_income() for income dataset.
    • The function should return (x_train, y_train, x_test, y_test)
  2. Add a separate elif condition in this section within _load_data() method of TabularDataset() class in utils/load_data.py

  3. Create a new config file with the same name as dataset name.

    • For example, tcga.yaml for tcga dataset, or income.yaml for income dataset.

    • You can also duplicate one of the existing configuration files (e.g. mnist.yaml), and re-name it.

    • Make sure that the new config file is under config/ directory.

  4. Provide data folder with pre-processed training and test set, and place it under ./data/ directory. You can also do train-test split and pre-processing within your custom _load_dataset_name() function.

  5. (Optional) If you want to place the new dataset under a different directory than the local "./data/", then:

    • Place the dataset folder anywhere, and define the root directory to it in this line of /config/runtime.yaml.

    • For example, if the path to tcga dataset is /home/.../data/tcga/, you only need to include /home/.../data/ in runtime.yaml. The code will fill in tcga folder name from the name given in the command line argument (e.g. -d dataset_name. In this case, dataset_name would be tcga).

Structure of the repo

- train.py
- eval.py

- src
    |-model.py
    
- config
    |-runtime.yaml
    |-mnist.yaml
    
- utils
    |-load_data.py
    |-arguments.py
    |-model_utils.py
    |-loss_functions.py
    ...
    
- data
    |-mnist
    ...
    
- results
    |
    ...

Results

Results at the end of training is saved under ./results directory. Results directory structure is as following:

- results
    |-dataset name
            |-evaluation
                |-clusters (for plotting t-SNE and PCA plots of embeddings)
                |-reconstructions (not used)
            |-training
                |-model_mode (e.g. ae for autoencoder)   
                     |-model
                     |-plots
                     |-loss

You can save results of evaluations under "evaluation" folder.

Experiment tracking

MLFlow is used to track experiments. It is turned off by default, but can be turned on by changing option on this line in runtime config file in ./config/runtime.yaml

Citing the paper

@article{ucar2021subtab,
  title={SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning},
  author={Ucar, Talip and Hajiramezanali, Ehsan and Edwards, Lindsay},
  journal={arXiv preprint arXiv:2110.04361},
  year={2021}
}

Citing this repo

If you use SubTab framework in your own studies, and work, please cite it by using the following:

@Misc{talip_ucar_2021_SubTab,
  author =   {Talip Ucar},
  title =    {{SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning}},
  howpublished = {\url{https://github.com/AstraZeneca/SubTab}},
  month        = June,
  year = {since 2021}
}
Owner
AstraZeneca
Data and AI: Unlocking new science insights
AstraZeneca
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
QilingLab challenge writeup

qiling lab writeup shielder 在 2021/7/21 發布了 QilingLab 來幫助學習 qiling framwork 的用法,剛好最近有用到,順手解了一下並寫了一下 writeup。 前情提要 Qiling 是一款功能強大的模擬框架,和 qemu user mode

Yuan 17 Nov 17, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Car Parking Tracker Using OpenCv

Car Parking Vacancy Tracker Using OpenCv I used basic image processing methods i

Adwait Kelkar 30 Dec 03, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022