Provide baselines and evaluation metrics of the task: traffic flow prediction

Overview

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction.

Due to technical reasons, I did not fork their code.

Introduction

This repo provide the implementations of baselines in the field traffic flow prediction. Most of the code in this field is too out-of-date to run, so I use docker to save you from installing tedious frameworks and provide one-line command to run the whole models. Before running, make sure copy TaxiBJ dataset to the data folder. Check Out QuickStart, where I provide out-of-the-box tutorial for you to use this repo!

Install tedious frameworks with few lines of code

git clone https://github.com/pengzhangzhi/Benchmark-Traffic-flow-prediction-.git
cd Benchmark-Traffic-flow-prediction-
docker pull tensorflow/tensorflow:2.4.3-gpu
docker run -it tensorflow/tensorflow:2.4.3-gpu
pip install -r requirements.txt

Run Baselines

bash train_TaxiBJ.sh
bash train_TaxiNYC.sh

Repository structure

Each of the main folders is dedicated to a specific deep learning network. Some of them were taken and modified from other repositories associated with the source paper, while others are our original implementations. Here it is an exhaustive list:

  • ST-ResNet. Folder for [1]. The original source code is here.
  • MST3D. Folder with our original implementation of the model described in [2].
  • Pred-CNN. Folder for [3]. The original repository is here.
  • ST3DNet. Folder for [4]. The starting-point code can be found here.
  • STAR. Folder for [5]. Soure code was taken from here.
  • 3D-CLoST. Folder dedicated to a model created during another research at Università Bicocca.
  • STDN. Folder referring to [6]. This folder is actually a copy of this repository, since it was never used in our experimentes.
  • Autoencoder. Refer to paper: Listening to the city, attentively: A Spatio-TemporalAttention Boosted Autoencoder for the Short-Term Flow Prediction Problem.

The contents of these folders can be a little different from each other, accordingly to the structure of the source repositories. Nevertheless, in each of them there are all the codes used to create input flow volumes, training and testing the models for single step prediction, and to evaluate performance on multi step prediction and transfer learning experiments.

The remaining folders are:

  • baselines. Contains the code implementing Historical Average and ARIMA approaches to the traffic flow prediction problem.
  • data. Folder where source data should be put in.
  • helpers. Contains some helpers code used for data visualization or to get weather info through an external API.

References

[1] Zhang, Junbo, Yu Zheng, and Dekang Qi. "Deep spatio-temporal residual networks for citywide crowd flows prediction." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. No. 1. 2017.

[2] Chen, Cen, et al. "Exploiting spatio-temporal correlations with multiple 3d convolutional neural networks for citywide vehicle flow prediction." 2018 IEEE international conference on data mining (ICDM). IEEE, 2018.

[3] Xu, Ziru, et al. "PredCNN: Predictive Learning with Cascade Convolutions." IJCAI. 2018.

[4] Guo, Shengnan, et al. "Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting." IEEE Transactions on Intelligent Transportation Systems 20.10 (2019): 3913-3926.

[5] Wang, Hongnian, and Han Su. "STAR: A concise deep learning framework for citywide human mobility prediction." 2019 20th IEEE International Conference on Mobile Data Management (MDM). IEEE, 2019.

[6] Yao, Huaxiu, et al. "Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019.

[7] Liu, Yang, et al. "Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction." IEEE Transactions on Intelligent Transportation Systems 21.11 (2019): 4798-4807.

[8] Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." Proceedings of the European conference on computer vision (ECCV). 2018.

Owner
Zhangzhi Peng
On the way of science :-)
Zhangzhi Peng
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Privacy as Code for DSAR Orchestration: Privacy Request automation to fulfill GDPR, CCPA, and LGPD data subject requests.

Meet Fidesops: Privacy as Code for DSAR Orchestration A part of the greater Fides ecosystem. ⚡ Overview Fidesops (fee-dez-äps, combination of the Lati

Ethyca 44 Dec 06, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022