Provide baselines and evaluation metrics of the task: traffic flow prediction

Overview

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction.

Due to technical reasons, I did not fork their code.

Introduction

This repo provide the implementations of baselines in the field traffic flow prediction. Most of the code in this field is too out-of-date to run, so I use docker to save you from installing tedious frameworks and provide one-line command to run the whole models. Before running, make sure copy TaxiBJ dataset to the data folder. Check Out QuickStart, where I provide out-of-the-box tutorial for you to use this repo!

Install tedious frameworks with few lines of code

git clone https://github.com/pengzhangzhi/Benchmark-Traffic-flow-prediction-.git
cd Benchmark-Traffic-flow-prediction-
docker pull tensorflow/tensorflow:2.4.3-gpu
docker run -it tensorflow/tensorflow:2.4.3-gpu
pip install -r requirements.txt

Run Baselines

bash train_TaxiBJ.sh
bash train_TaxiNYC.sh

Repository structure

Each of the main folders is dedicated to a specific deep learning network. Some of them were taken and modified from other repositories associated with the source paper, while others are our original implementations. Here it is an exhaustive list:

  • ST-ResNet. Folder for [1]. The original source code is here.
  • MST3D. Folder with our original implementation of the model described in [2].
  • Pred-CNN. Folder for [3]. The original repository is here.
  • ST3DNet. Folder for [4]. The starting-point code can be found here.
  • STAR. Folder for [5]. Soure code was taken from here.
  • 3D-CLoST. Folder dedicated to a model created during another research at Università Bicocca.
  • STDN. Folder referring to [6]. This folder is actually a copy of this repository, since it was never used in our experimentes.
  • Autoencoder. Refer to paper: Listening to the city, attentively: A Spatio-TemporalAttention Boosted Autoencoder for the Short-Term Flow Prediction Problem.

The contents of these folders can be a little different from each other, accordingly to the structure of the source repositories. Nevertheless, in each of them there are all the codes used to create input flow volumes, training and testing the models for single step prediction, and to evaluate performance on multi step prediction and transfer learning experiments.

The remaining folders are:

  • baselines. Contains the code implementing Historical Average and ARIMA approaches to the traffic flow prediction problem.
  • data. Folder where source data should be put in.
  • helpers. Contains some helpers code used for data visualization or to get weather info through an external API.

References

[1] Zhang, Junbo, Yu Zheng, and Dekang Qi. "Deep spatio-temporal residual networks for citywide crowd flows prediction." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31. No. 1. 2017.

[2] Chen, Cen, et al. "Exploiting spatio-temporal correlations with multiple 3d convolutional neural networks for citywide vehicle flow prediction." 2018 IEEE international conference on data mining (ICDM). IEEE, 2018.

[3] Xu, Ziru, et al. "PredCNN: Predictive Learning with Cascade Convolutions." IJCAI. 2018.

[4] Guo, Shengnan, et al. "Deep spatial–temporal 3D convolutional neural networks for traffic data forecasting." IEEE Transactions on Intelligent Transportation Systems 20.10 (2019): 3913-3926.

[5] Wang, Hongnian, and Han Su. "STAR: A concise deep learning framework for citywide human mobility prediction." 2019 20th IEEE International Conference on Mobile Data Management (MDM). IEEE, 2019.

[6] Yao, Huaxiu, et al. "Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019.

[7] Liu, Yang, et al. "Attention-based deep ensemble net for large-scale online taxi-hailing demand prediction." IEEE Transactions on Intelligent Transportation Systems 21.11 (2019): 4798-4807.

[8] Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." Proceedings of the European conference on computer vision (ECCV). 2018.

Owner
Zhangzhi Peng
On the way of science :-)
Zhangzhi Peng
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021