Lux AI environment interface for RLlib multi-agents

Overview

Lux AI interface to RLlib MultiAgentsEnv

For Lux AI Season 1 Kaggle competition.

Please let me know if you use this, I'd like to see what people build with it!

TL;DR

The only thing you need to customise is the interface class (inheriting from multilux.lux_interface.LuxDefaultInterface). The interface needs to:

  • Implement four "toward-agent" methods:
    • observation(joint_observation, actors)
    • reward(joint_reward, actors)
    • done(joint_done, actors)
    • info(joint_info, actors)
  • Implement one "toward-environment" method:
    • actions(action_dict)
  • Manage its own actor id creation, assignment, etc. (hint citytiles don't have ids in the game engine)

Implementation diagram

Diagram

Example for training

import numpy as np

# (1) Define your custom interface for (obs, reward, done, info, actions) ---
from multilux.lux_interface import LuxDefaultInterface

class MyInterface(LuxDefaultInterface):
    def observation(self, joint_obs, actors) -> dict:
        return {a: np.array([0, 0]) for a in actors}

    def reward(self, joint_reward, actors) -> dict:
        return {a: 0 for a in actors}

    def done(self, joint_done, actors) -> dict:
        return {a: True for a in actors}

    def info(self, joint_info, actors) -> dict:
        return {a: {} for a in actors}

    def actions(self, action_dict) -> list:
        return []
    
# (2) Register environment --------------------------------------------------
from ray.tune.registry import register_env
from multilux.lux_env import LuxEnv


def env_creator(env_config):
    
    configuration = env_config.get(configuration, {})
    debug = env_config.get(debug, False)
    interface = env_config.get(interface, MyInterface)
    agents = env_config.get(agents, (None, "simple_agent"))
    
    return LuxEnv(configuration, debug,
                     interface=interface,
                     agents=agents,
                     train=True)

register_env("multilux", env_creator)

# (3) Define observation and action spaces for each actor type --------------
from gym import spaces

u_obs_space = spaces.Box(low=0, high=1, shape=(2,), dtype=np.float16)
u_act_space = spaces.Discrete(2)
ct_obs_space = spaces.Box(low=0, high=1, shape=(2,), dtype=np.float16)
ct_act_space = spaces.Discrete(2)

# (4) Instantiate agent ------------------------------------------------------
import random
from ray.rllib.agents import ppo

config = {
    "env_config": {},
    "multiagent": {
        "policies": {
            # the first tuple value is None -> uses default policy
            "unit-1": (None, u_obs_space, u_act_space, {"gamma": 0.85}),
            "unit-2": (None, u_obs_space, u_act_space, {"gamma": 0.99}),
            "citytile": (None, ct_obs_space, ct_act_space, {}),
        },
        "policy_mapping_fn":
            lambda agent_id:
                "citytile"  # Citytiles always have the same policy
                if agent_id.startswith("u_")
                else random.choice(["unit-1", "unit-2"])  # Randomly choose from unit policies
    },
}

trainer = ppo.PPOTrainer(env=LuxEnv, config=config)

# (5) Train away -------------------------------------------------------------
while True:
    print(trainer.train())

See examples/training.py


See also the LuxPythonEnvGym OpenAI-gym port by @glmcdona.

Jaime Ruiz Serra

Owner
Jaime
Deep Reinforcement Learning, Computer Vision, Robotics
Jaime
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Godot RL Agents is a fully Open Source packages that allows video game creators

Godot RL Agents The Godot RL Agents is a fully Open Source packages that allows video game creators, AI researchers and hobbiest the opportunity to le

Edward Beeching 326 Dec 30, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022