PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

Overview

Scene Graph Benchmark in Pytorch

LICENSE Python PyTorch

Our paper Unbiased Scene Graph Generation from Biased Training has been accepted by CVPR 2020 (Oral).

Recent Updates

Contents

  1. Overview
  2. Install the Requirements
  3. Prepare the Dataset
  4. Metrics and Results for our Toolkit
  5. Faster R-CNN Pre-training
  6. Scene Graph Generation as RoI_Head
  7. Training on Scene Graph Generation
  8. Evaluation on Scene Graph Generation
  9. Detect Scene Graphs on Your Custom Images 🌟
  10. Visualize Detected Scene Graphs of Custom Images 🌟
  11. Other Options that May Improve the SGG
  12. Tips and Tricks for TDE on any Unbiased Task
  13. Frequently Asked Questions
  14. Citations

Overview

This project aims to build a new CODEBASE of Scene Graph Generation (SGG), and it is also a Pytorch implementation of the paper Unbiased Scene Graph Generation from Biased Training. The previous widely adopted SGG codebase neural-motifs is detached from the recent development of Faster/Mask R-CNN. Therefore, I decided to build a scene graph benchmark on top of the well-known maskrcnn-benchmark project and define relationship prediction as an additional roi_head. By the way, thanks to their elegant framework, this codebase is much more novice-friendly and easier to read/modify for your own projects than previous neural-motifs framework(at least I hope so). It is a pity that when I was working on this project, the detectron2 had not been released, but I think we can consider maskrcnn-benchmark as a more stable version with less bugs, hahahaha. I also introduce all the old and new metrics used in SGG, and clarify two common misunderstandings in SGG metrics in METRICS.md, which cause abnormal results in some papers.

Benefit from the up-to-date Faster R-CNN in maskrcnn-benchmark, this codebase achieves new state-of-the-art [email protected] on SGCls & SGGen (by 2020.2.16) through the reimplemented VCTree using two 1080ti GPUs and batch size 8:

Models SGGen [email protected] SGGen [email protected] SGGen [email protected] SGCls [email protected] SGCls [email protected] SGCls [email protected] PredCls [email protected] PredCls [email protected] PredCls [email protected]
VCTree 24.53 31.93 36.21 42.77 46.67 47.64 59.02 65.42 67.18

Note that all results of VCTree should be better than what we reported in Unbiased Scene Graph Generation from Biased Training, because we optimized the tree construction network after the publication.

The illustration of the Unbiased SGG from 'Unbiased Scene Graph Generation from Biased Training'

alt text

Installation

Check INSTALL.md for installation instructions.

Dataset

Check DATASET.md for instructions of dataset preprocessing.

Metrics and Results (IMPORTANT)

Explanation of metrics in our toolkit and reported results are given in METRICS.md

Pretrained Models

Since we tested many SGG models in our paper Unbiased Scene Graph Generation from Biased Training, I won't upload all the pretrained SGG models here. However, you can download the pretrained Faster R-CNN we used in the paper, which is the most time consuming step in the whole training process (it took 4 2080ti GPUs). As to the SGG model, you can follow the rest instructions to train your own, which only takes 2 GPUs to train each SGG model. The results should be very close to the reported results given in METRICS.md

After you download the Faster R-CNN model, please extract all the files to the directory /home/username/checkpoints/pretrained_faster_rcnn. To train your own Faster R-CNN model, please follow the next section.

The above pretrained Faster R-CNN model achives 38.52/26.35/28.14 mAp on VG train/val/test set respectively.

Faster R-CNN pre-training

The following command can be used to train your own Faster R-CNN model:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --master_port 10001 --nproc_per_node=4 tools/detector_pretrain_net.py --config-file "configs/e2e_relation_detector_X_101_32_8_FPN_1x.yaml" SOLVER.IMS_PER_BATCH 8 TEST.IMS_PER_BATCH 4 DTYPE "float16" SOLVER.MAX_ITER 50000 SOLVER.STEPS "(30000, 45000)" SOLVER.VAL_PERIOD 2000 SOLVER.CHECKPOINT_PERIOD 2000 MODEL.RELATION_ON False OUTPUT_DIR /home/kaihua/checkpoints/pretrained_faster_rcnn SOLVER.PRE_VAL False

where CUDA_VISIBLE_DEVICES and --nproc_per_node represent the id of GPUs and number of GPUs you use, --config-file means the config we use, where you can change other parameters. SOLVER.IMS_PER_BATCH and TEST.IMS_PER_BATCH are the training and testing batch size respectively, DTYPE "float16" enables Automatic Mixed Precision supported by APEX, SOLVER.MAX_ITER is the maximum iteration, SOLVER.STEPS is the steps where we decay the learning rate, SOLVER.VAL_PERIOD and SOLVER.CHECKPOINT_PERIOD are the periods of conducting val and saving checkpoint, MODEL.RELATION_ON means turning on the relationship head or not (since this is the pretraining phase for Faster R-CNN only, we turn off the relationship head), OUTPUT_DIR is the output directory to save checkpoints and log (considering /home/username/checkpoints/pretrained_faster_rcnn), SOLVER.PRE_VAL means whether we conduct validation before training or not.

Scene Graph Generation as RoI_Head

To standardize the SGG, I define scene graph generation as an RoI_Head. Referring to the design of other roi_heads like box_head, I put most of the SGG codes under maskrcnn_benchmark/modeling/roi_heads/relation_head and their calling sequence is as follows:

alt text

Perform training on Scene Graph Generation

There are three standard protocols: (1) Predicate Classification (PredCls): taking ground truth bounding boxes and labels as inputs, (2) Scene Graph Classification (SGCls) : using ground truth bounding boxes without labels, (3) Scene Graph Detection (SGDet): detecting SGs from scratch. We use two switches MODEL.ROI_RELATION_HEAD.USE_GT_BOX and MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL to select the protocols.

For Predicate Classification (PredCls), we need to set:

MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL True

For Scene Graph Classification (SGCls):

MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False

For Scene Graph Detection (SGDet):

MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False

Predefined Models

We abstract various SGG models to be different relation-head predictors in the file roi_heads/relation_head/roi_relation_predictors.py, which are independent of the Faster R-CNN backbone and relation-head feature extractor. To select our predefined models, you can use MODEL.ROI_RELATION_HEAD.PREDICTOR.

For Neural-MOTIFS Model:

MODEL.ROI_RELATION_HEAD.PREDICTOR MotifPredictor

For Iterative-Message-Passing(IMP) Model (Note that SOLVER.BASE_LR should be changed to 0.001 in SGCls, or the model won't converge):

MODEL.ROI_RELATION_HEAD.PREDICTOR IMPPredictor

For VCTree Model:

MODEL.ROI_RELATION_HEAD.PREDICTOR VCTreePredictor

For our predefined Transformer Model (Note that Transformer Model needs to change SOLVER.BASE_LR to 0.001, SOLVER.SCHEDULE.TYPE to WarmupMultiStepLR, SOLVER.MAX_ITER to 16000, SOLVER.IMS_PER_BATCH to 16, SOLVER.STEPS to (10000, 16000).), which is provided by Jiaxin Shi:

MODEL.ROI_RELATION_HEAD.PREDICTOR TransformerPredictor

For Unbiased-Causal-TDE Model:

MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor

The default settings are under configs/e2e_relation_X_101_32_8_FPN_1x.yaml and maskrcnn_benchmark/config/defaults.py. The priority is command > yaml > defaults.py

Customize Your Own Model

If you want to customize your own model, you can refer maskrcnn-benchmark/modeling/roi_heads/relation_head/model_XXXXX.py and maskrcnn-benchmark/modeling/roi_heads/relation_head/utils_XXXXX.py. You also need to add corresponding nn.Module in maskrcnn-benchmark/modeling/roi_heads/relation_head/roi_relation_predictors.py. Sometimes you may also need to change the inputs & outputs of the module through maskrcnn-benchmark/modeling/roi_heads/relation_head/relation_head.py.

The proposed Causal TDE on Unbiased Scene Graph Generation from Biased Training

As to the Unbiased-Causal-TDE, there are some additional parameters you need to know. MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE is used to select the causal effect analysis type during inference(test), where "none" is original likelihood, "TDE" is total direct effect, "NIE" is natural indirect effect, "TE" is total effect. MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE has two choice "sum" or "gate". Since Unbiased Causal TDE Analysis is model-agnostic, we support Neural-MOTIFS, VCTree and VTransE. MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER is used to select these models for Unbiased Causal Analysis, which has three choices: motifs, vctree, vtranse.

Note that during training, we always set MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE to be 'none', because causal effect analysis is only applicable to the inference/test phase.

Examples of the Training Command

Training Example 1 : (PreCls, Motif Model)

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port 10025 --nproc_per_node=2 tools/relation_train_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL True MODEL.ROI_RELATION_HEAD.PREDICTOR MotifPredictor SOLVER.IMS_PER_BATCH 12 TEST.IMS_PER_BATCH 2 DTYPE "float16" SOLVER.MAX_ITER 50000 SOLVER.VAL_PERIOD 2000 SOLVER.CHECKPOINT_PERIOD 2000 GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR /home/kaihua/checkpoints/motif-precls-exmp

where GLOVE_DIR is the directory used to save glove initializations, MODEL.PRETRAINED_DETECTOR_CKPT is the pretrained Faster R-CNN model you want to load, OUTPUT_DIR is the output directory used to save checkpoints and the log. Since we use the WarmupReduceLROnPlateau as the learning scheduler for SGG, SOLVER.STEPS is not required anymore.

Training Example 2 : (SGCls, Causal, TDE, SUM Fusion, MOTIFS Model)

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port 10026 --nproc_per_node=2 tools/relation_train_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs  SOLVER.IMS_PER_BATCH 12 TEST.IMS_PER_BATCH 2 DTYPE "float16" SOLVER.MAX_ITER 50000 SOLVER.VAL_PERIOD 2000 SOLVER.CHECKPOINT_PERIOD 2000 GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/pretrained_faster_rcnn/model_final.pth OUTPUT_DIR /home/kaihua/checkpoints/causal-motifs-sgcls-exmp

Evaluation

Examples of the Test Command

Test Example 1 : (PreCls, Motif Model)

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10027 --nproc_per_node=1 tools/relation_test_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL True MODEL.ROI_RELATION_HEAD.PREDICTOR MotifPredictor TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/motif-precls-exmp OUTPUT_DIR /home/kaihua/checkpoints/motif-precls-exmp

Test Example 2 : (SGCls, Causal, TDE, SUM Fusion, MOTIFS Model)

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10028 --nproc_per_node=1 tools/relation_test_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX True MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE TDE MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs  TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/causal-motifs-sgcls-exmp OUTPUT_DIR /home/kaihua/checkpoints/causal-motifs-sgcls-exmp

Examples of Pretrained Causal MOTIFS-SUM models

Examples of Pretrained Causal MOTIFS-SUM models on SGDet/SGCls/PredCls (batch size 12): (SGDet Download), (SGCls Download), (PredCls Download)

Corresponding Results (The original models used in the paper are lost. These are the fresh ones, so there are some fluctuations on the results. More results can be found in Reported Results):

Models [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
MOTIFS-SGDet-none 25.42 32.45 37.26 4.36 5.83 7.08 0.02 0.08 0.24
MOTIFS-SGDet-TDE 11.92 16.56 20.15 6.58 8.94 10.99 1.54 2.33 3.03
MOTIFS-SGCls-none 36.02 39.25 40.07 6.50 8.02 8.51 1.06 2.18 3.07
MOTIFS-SGCls-TDE 20.47 26.31 28.79 9.80 13.21 15.06 1.91 2.95 4.10
MOTIFS-PredCls-none 59.64 66.11 67.96 11.46 14.60 15.84 5.79 11.02 14.74
MOTIFS-PredCls-TDE 33.38 45.88 51.25 17.85 24.75 28.70 8.28 14.31 18.04

SGDet on Custom Images

Note that evaluation on custum images is only applicable for SGDet model, because PredCls and SGCls model requires additional ground-truth bounding boxes information. To detect scene graphs into a json file on your own images, you need to turn on the switch TEST.CUSTUM_EVAL and give a folder path that contains the custom images to TEST.CUSTUM_PATH. Only JPG files are allowed. The output will be saved as custom_prediction.json in the given DETECTED_SGG_DIR.

Test Example 1 : (SGDet, Causal TDE, MOTIFS Model, SUM Fusion) (checkpoint)

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10027 --nproc_per_node=1 tools/relation_test_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE TDE MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/causal-motifs-sgdet OUTPUT_DIR /home/kaihua/checkpoints/causal-motifs-sgdet TEST.CUSTUM_EVAL True TEST.CUSTUM_PATH /home/kaihua/checkpoints/custom_images DETECTED_SGG_DIR /home/kaihua/checkpoints/your_output_path

Test Example 2 : (SGDet, Original, MOTIFS Model, SUM Fusion) (same checkpoint)

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --master_port 10027 --nproc_per_node=1 tools/relation_test_net.py --config-file "configs/e2e_relation_X_101_32_8_FPN_1x.yaml" MODEL.ROI_RELATION_HEAD.USE_GT_BOX False MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL False MODEL.ROI_RELATION_HEAD.PREDICTOR CausalAnalysisPredictor MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE none MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE sum MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER motifs TEST.IMS_PER_BATCH 1 DTYPE "float16" GLOVE_DIR /home/kaihua/glove MODEL.PRETRAINED_DETECTOR_CKPT /home/kaihua/checkpoints/causal-motifs-sgdet OUTPUT_DIR /home/kaihua/checkpoints/causal-motifs-sgdet TEST.CUSTUM_EVAL True TEST.CUSTUM_PATH /home/kaihua/checkpoints/custom_images DETECTED_SGG_DIR /home/kaihua/checkpoints/your_output_path

The output is a json file. For each image, the scene graph information is saved as a dictionary containing bbox(sorted), bbox_labels(sorted), bbox_scores(sorted), rel_pairs(sorted), rel_labels(sorted), rel_scores(sorted), rel_all_scores(sorted), where the last rel_all_scores give all 51 predicates probability for each pair of objects. The dataset information is saved as custom_data_info.json in the same DETECTED_SGG_DIR.

Visualize Detected SGs of Custom Images

To visualize the detected scene graphs of custom images, you can follow the jupyter note: visualization/3.visualize_custom_SGDet.jpynb. The inputs of our visualization code are custom_prediction.json and custom_data_info.json in DETECTED_SGG_DIR. They will be automatically generated if you run the above custom SGDet instruction successfully. Note that there may be too much trivial bounding boxes and relationships, so you can select top-k bbox and predicates for better scene graphs by change parameters box_topk and rel_topk.

Other Options that May Improve the SGG

  • For some models (not all), turning on or turning off MODEL.ROI_RELATION_HEAD.POOLING_ALL_LEVELS will affect the performance of predicate prediction, e.g., turning it off will improve VCTree PredCls but not the corresponding SGCls and SGGen. For the reported results of VCTree, we simply turn it on for all three protocols like other models.

  • For some models (not all), a crazy fusion proposed by Learning to Count Object will significantly improves the results, which looks like f(x1, x2) = ReLU(x1 + x2) - (x1 - x2)**2. It can be used to combine the subject and object features in roi_heads/relation_head/roi_relation_predictors.py. For now, most of our model just concatenate them as torch.cat((head_rep, tail_rep), dim=-1).

  • Not to mention the hidden dimensions in the models, e.g., MODEL.ROI_RELATION_HEAD.CONTEXT_HIDDEN_DIM. Due to the limited time, we didn't fully explore all the settings in this project, I won't be surprised if you improve our results by simply changing one of our hyper-parameters

Tips and Tricks for any Unbiased TaskX from Biased Training

The counterfactual inference is not only applicable to SGG. Actually, my collegue Yulei found that counterfactual causal inference also has significant potential in unbiased VQA. We believe such an counterfactual inference can also be applied to lots of reasoning tasks with significant bias. It basically just runs the model two times (one for original output, another for the intervened output), and the later one gets the biased prior that should be subtracted from the final prediction. But there are three tips you need to bear in mind:

  • The most important things is always the causal graph. You need to find the correct causal graph with an identifiable branch that causes the biased predictions. If the causal graph is incorrect, the rest would be meaningless. Note that causal graph is not the summarization of the existing network (but the guidance to build networks), you should modify your network based on causal graph, but not vise versa.
  • For those nodes having multiple input branches in the causal graph, it's crucial to choose the right fusion function. We tested lots of fusion funtions and only found the SUM fusion and GATE fusion consistently working well. The fusion function like element-wise production won't work for TDE analysis in most of the cases, because the causal influence from multiple branches can not be linearly separated anymore, which means, it's no longer an identifiable 'influence'.
  • For those final predictions having multiple input branches in the causal graph, it may also need to add auxiliary losses for each branch to stablize the causal influence of each independent branch. Because when these branches have different convergent speeds, those hard branches would easily be learned as unimportant tiny floatings that depend on the fastest/stablest converged branch. Auxiliary losses allow different branches to have independent and equal influences.

Frequently Asked Questions:

  1. Q: Fail to load the given checkpoints. A: The model to be loaded is based on the last_checkpoint file in the OUTPUT_DIR path. If you fail to load the given pretained checkpoints, it probably because the last_checkpoint file still provides the path in my workstation rather than your own path.

  2. Q: AssertionError on "assert len(fns) == 108073" A: If you are working on VG dataset, it is probably caused by the wrong DATASETS (data path) in maskrcnn_benchmark/config/paths_catlog.py. If you are working on your custom datasets, just comment out the assertions.

  3. Q: AssertionError on "l_batch == 1" in model_motifs.py A: The original MOTIFS code only supports evaluation on 1 GPU. Since my reimplemented motifs is based on their code, I keep this assertion to make sure it won't cause any unexpected errors.

Citations

If you find this project helps your research, please kindly consider citing our project or papers in your publications.

@misc{tang2020sggcode,
title = {A Scene Graph Generation Codebase in PyTorch},
author = {Tang, Kaihua},
year = {2020},
note = {\url{https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch}},
}

@inproceedings{tang2018learning,
  title={Learning to Compose Dynamic Tree Structures for Visual Contexts},
  author={Tang, Kaihua and Zhang, Hanwang and Wu, Baoyuan and Luo, Wenhan and Liu, Wei},
  booktitle= "Conference on Computer Vision and Pattern Recognition",
  year={2019}
}

@inproceedings{tang2020unbiased,
  title={Unbiased Scene Graph Generation from Biased Training},
  author={Tang, Kaihua and Niu, Yulei and Huang, Jianqiang and Shi, Jiaxin and Zhang, Hanwang},
  booktitle= "Conference on Computer Vision and Pattern Recognition",
  year={2020}
}
Owner
Kaihua Tang
@kaihuatang.github.io/
Kaihua Tang
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022