RoboDesk A Multi-Task Reinforcement Learning Benchmark

Related tags

Deep Learningrobodesk
Overview

RoboDesk

PyPI

A Multi-Task Reinforcement Learning Benchmark

Robodesk Banner

If you find this open source release useful, please reference in your paper:

@misc{kannan2021robodesk,
  author = {Harini Kannan and Danijar Hafner and Chelsea Finn and Dumitru Erhan},
  title = {RoboDesk: A Multi-Task Reinforcement Learning Benchmark},
  year = {2021},
  howpublished = {\url{https://github.com/google-research/robodesk}},
}

Highlights

  • Diversity: RoboDesk includes 9 diverse tasks that test for a variety of different behaviors within the same environment, making it useful for evaluating transfer, multi-task learning, and global exploration.
  • Complexity: The high-dimensional image inputs contain objects of different shapes and colors, whose initial positions are randomized to avoid naive memorization and require learning algorithms to generalize.
  • Robustness: We carefully designed and tested RoboDesk to ensure fast and stable physics simulation. This avoids objects from intersecting, getting stuck, or quickly flying away, a common problem with some existing environments.
  • Lightweight: RoboDesk comes as a self-contained Python package with few dependencies. The source code is clean and pragmatic, making it a useful blueprint for creating new MuJoCo environments.

Training Agents

Installation: pip3 install -U robodesk

The environment follows the OpenAI Gym interface:

import robodesk

env = robodesk.RoboDesk(seed=0)
obs = env.reset()
assert obs.shape == (64, 64, 3)

done = False
while not done:
  action = env.action_space.sample()
  obs, reward, done, info = env.step(action)

Tasks

Robodesk Tasks

The behaviors above were learned using the Dreamer agent. These policies have been learned from scratch and only from pixels, not proprioceptive states.

Task Description
open_slide Push the sliding door all the way to the right, navigating around the other objects.
open_drawer Pull the dark brown drawer all the way open.
push_green Push the green button to turn the green light on.
stack_blocks Stack the upright blue block on top of the flat green block.
upright_block_off_table Push the blue upright block off the table.
flat_block_in_bin Push the green flat block into the blue bin.
flat_block_in_shelf Push the green flat block into the shelf, navigating around the other blocks.
lift_upright_block Grasp the blue upright block and lift it above the table.
lift_ball Grasp the magenta ball and lift it above the table.

Environment Details

Constructor

robodesk.RoboDesk(task='open_slide', reward='dense', action_repeat=1, episode_length=500, image_size=64)
Parameter Description
task Available tasks are open_slide, open_drawer, push_green, stack, upright_block_off_table, flat_block_in_bin, flat_block_in_shelf, lift_upright_block, lift_ball.
reward Available reward types are dense, sparse, success. Success gives only the first sparse reward during the episode, useful for computing success rates during evaluation.
action_repeat Reduces the control frequency by applying each action multiple times. This is faster than using an environment wrapper because only the needed images are rendered.
episode_length Time limit for the episode, can be None.
image_size Size of the image observations in pixels, used for both height and width.

Reward

All rewards are bound between 0 and 1. There are three types of rewards available:

  • Dense rewards are based on Euclidean distances between the objects and their target positions and can include additional terms, for example to encourage the arm to reach the object. These are the easiest rewards for learning.
  • Sparse rewards are either 0 or 1 based on whether the target object is in the target area or not, according to a fixed threshold. Learning from sparse rewards is more challenging.
  • Success rewards are equivalent to the sparse rewards, except that only the first reward is given during each episode. As a result, an episode return of 0 means failure and 1 means sucess at the task. This should only be used during evaluation.

Termination

Episodes end after 500 time steps by default. There are no early terminations.

Observation Space

Each observation is a dictionary that contains the current image, as well as additional information. For the standard benchmark, only the image should be used for learning. The observation dictionary contains the following keys:

Key Space
image Box(0, 255, (64, 64, 3), np.uint8)
qpos_robot Box(-np.inf, np.inf, (9,), np.float32)
qvel_robot Box(-np.inf, np.inf, (9,), np.float32)
qpos_objects Box(-np.inf, np.inf, (26,), np.float32)
qvel_objects Box(-np.inf, np.inf, (26,), np.float32)
end_effector Box(-np.inf, np.inf, (3,), np.float32)

Action Space

RoboDesk uses end effector control with a simple bounded action space:

Box(-1, 1, (5,), np.float32)

Acknowledgements

We thank Ben Eysenbach and Debidatta Dwibedi for their helpful feedback.

Our benchmark builds upon previously open-sourced work. We build upon the desk XMLs first introduced in [1], the Franka XMLs open-sourced in [2], and the Franka meshes open-sourced in [3].

Questions

Please open an issue on Github.

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022