Have you ever wondered how cool it would be to have your own A.I

Overview

python-with-AI

create import pyttsx3 #pip install pyttsx3 import speech_recognition as sr #pip intall speech recongnition import datetime import wikipedia #pip install wikipedia import webbrowser import os import smtplib

engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices')

print(voices[1].id)

engine.setProperty('voice', voices[0].id)

def speak(audio): engine.say(audio) engine.runAndWait()

def wishMe(): hour = int(datetime.datetime.now().hour) if hour>=0 and hour<12: speak("Good Morning!")

elif hour>=12 and hour<18:
    speak("Good Afternoon!")   

else:
    speak("Good Evening!")  

speak("I am Jarvis Sir. Please tell me how may I help you")       

def takeCommand(): #It takes microphone input from the user and returns string output

r = sr.Recognizer()
with sr.Microphone() as source:
    print("Listening...")
    r.pause_threshold = 1
    audio = r.listen(source)

try:
    print("Recognizing...")    
    query = r.recognize_google(audio, language='en-in')
    print(f"User said: {query}\n")

except Exception as e:
    # print(e)    
    print("Say that again please...")  
    return "None"
return query

def sendEmail(to, content): server = smtplib.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() server.login('[email protected]', 'your-password') server.sendmail('[email protected]', to, content) server.close()

if name == "main": wishMe() while True: # if 1: query = takeCommand().lower()

    # Logic for executing tasks based on query
    if 'wikipedia' in query:
        speak('Searching Wikipedia...')
        query = query.replace("wikipedia", "")
        results = wikipedia.summary(query, sentences=2)
        speak("According to Wikipedia")
        print(results)
        speak(results)

    elif 'open youtube' in query:
        webbrowser.open("youtube.com")

    elif 'open google' in query:
        webbrowser.open("google.com")

    elif 'open stackoverflow' in query:
        webbrowser.open("stackoverflow.com")   


    elif 'play music' in query:
        music_dir = 'D:\\Non Critical\\songs\\Favorite Songs2'
        songs = os.listdir(music_dir)
        print(songs)    
        os.startfile(os.path.join(music_dir, songs[0]))

    elif 'the time' in query:
        strTime = datetime.datetime.now().strftime("%H:%M:%S")    
        speak(f"Sir, the time is {strTime}")

    elif 'open code' in query:
        codePath = "C:\\Users\\harsh\\AppData\\Local\\Programs\\Microsoft VS Code\\Code.exe"
        os.startfile(codePath)

    elif 'email to harry' in query:
        try:
            speak("What should I say?")
            content = takeCommand()
            to = "[email protected]"    
            sendEmail(to, content)
            speak("Email has been sent!")
        except Exception as e:
            print(e)
            speak("Sorry my friend harsh bhai. I am not able to send this email")    
Owner
Harsh Gupta
Harsh Gupta
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023