Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Overview

Optimizers Visualized

Visualization of how different optimizers handle mathematical functions for optimization.

Contents

Installation of libraries

pip install -r requirements.txt

NOTE: The optimizers used in this project are the pre-written ones in the pytorch module.

Usage

python main.py

The project is designed to be interactive, making it easy for the user to change any default values simply using stdin.

Functions for optimization

Matyas' Function

This is a relatively simple function for optimization.

Source: https://en.wikipedia.org/wiki/File:Matyas_function.pdf

Himmelblau's Function

A complex function, with multiple global minimas.

Source: https://en.wikipedia.org/wiki/File:Himmelblau_function.svg

Visualization of optimizers

All optimizers were given 100 iterations to find the global minima, from a same starting point. Learning rate was set to 0.1 for all instances, except when using SGD for minimizing Himmelblau's function.

Stochastic Gradient Descent

The vanilla stochastic gradient descent optimizer, with no additional functionalities:

theta_t = theta_t - lr * gradient

SGD on Matyas' function

We can see that SGD takes an almost direct path downwards, and then heads towards the global minima.

SGD on Himmelblau's function

SGD on Himmelblau's function fails to converge even when the learning rate is reduced from 0.1 to 0.03.

It only converges when the learning rate is further lowered to 0.01, still overshooting during the early iterations.

Root Mean Square Propagation

RMSProp with the default hyperparameters, except the learning rate.

RMSProp on Matyas' function

RMSProp first reaches a global minima in one dimension, and then switches to minimizing another dimension. This can be hurtful if there are saddle points in the function which is to be minimized.

RMSProp on Himmelblau's function

By trying to minimize one dimension first, RMSProp overshoots and has to return back to the proper path. It then minimizes the next dimension.

Adaptive Moment Estimation

Adam optimizer with the default hyperparameters, except the learning rate.

Adam on Matyas' function

Due to the momentum factor and the exponentially weighted average factor, Adam shoots past the minimal point, and returns back.

Adam on Himmelblau's function

Adam slides around the curves, again mostly due to the momentum factor.

Links

Todos

  • Add more optimizers
  • Add more complex functions
  • Test out optimizers in saddle points
Owner
Gautam J
19 | AI | ML | DL
Gautam J
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022