AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

Overview

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL is an automated penetration testing framework based on Deep Reinforcement Learning (DRL) techniques. AutoPentest-DRL can determine the most appropriate attack path for a given logical network, and can also be used to execute a penetration testing attack on a real network via tools such as Nmap and Metasploit. This framework is intended for educational purposes, so that users can study the penetration testing attack mechanisms. AutoPentest-DRL is being developed by the Cyber Range Organization and Design (CROND) NEC-endowed chair at the Japan Advanced Institute of Science and Technology (JAIST) in Ishikawa, Japan.

An overview of AutoPentest-DRL is shown below. The framework receives user input regarding the logical target network, including vulnerability information; alternatively, the framework can use Nmap for network scanning to find actual vulnerabilities in a real target network with known topology. The MulVAL attack-graph generator is then used to determine potential attack trees, which are fed in a simplified form into the DQN Decision Engine. The attack path that is produced as output can be used to study the attack mechanisms on a large number of logical networks. Alternatively, the framework can use the attack path with penetration testing tools, such as Metasploit, making it possible for the user to study how the attack can be carried out on a real target network.

Overview of AutoPentest-DRL

Next we provide brief information on how to setup and use AutoPentest-DRL. For details about its operation, please refer to the User Guide that we also make available.

Prerequisites

Several external tools are required in order to use AutoPentest-DRL; for the basic functionality (DQN training and attacks on logical networks), you'll need:

  • MulVAL: Attack-graph generator used by AutoPentest-DRL to produce possible attack paths for a given network. See the MulVAL page for installation instructions and dependencies. MulVAL should be installed in the directory repos/mulval in the AutoPentest-DRL folder. You also need to configure the /etc/profile file as discussed here. On some systems the tool epstopdf may also need to be installed, for instance by using the command below:
    sudo apt install texlive-font-utils
    

If you plan to use AutoPentest-DRL with real networks, you'll also need:

  • Nmap: Network scanner used by AutoPentest-DRL to determine vulnerabilities in a given real network. The command needed to install nmap on Ubuntu is given below:
    sudo apt install nmap
    
  • Metasploit: Penetration testing tools used by AutoPentest-DRL to actually conduct the attack proposed by the DQN engine on the real target network. To install Metasploit, you can use the installers made available on the Metasploit website. In addition, we use pymetasploit3 as RPC API to communicate with Metasploit, and this tool needs to be installed in the directory Penetration_tools/pymetasploit3 by following its author's instructions.

Setup

AutoPentest-DRL has been developed mainly on the Ubuntu 18.04 LTS operating system; other OSes may work, but have not been tested. In order to set up AutoPentest-DRL, use the releases page to download the latest version, and extract the source code archive into a directory of your choice (for instance, your home directory) on the host on which you intend to use it.

AutoPentest-DRL is implemented in Python, and it requires several packages to run. The file requirements.txt included with the distribution can be used to install the necessary packages via the following command that should be run from the AutoPentest-DRL/ directory:

$ sudo -H pip install -r requirements.txt

Quick Start

AutoPentest-DRL includes a trained DQN model, so you can use it out-of-the-box on a sample logical network topology by running the following command in a terminal from the AutoPentest-DRL/ directory:

$ python3 ./AutoPentest-DRL.py logical_attack

In this logical attack mode no actual attack is conducted, and AutoPentest-DRL will only determine the optimal attack path for the logical network topology that is described in the file MulVal_P/logical_attack_v1.P. By comparing the output path with the visualization of the attack graph that is generated by MulVAL in the file mulval_results/AttackGraph.pdf you can study in detail the attack steps.

For more information about the operation modes of AutoPentest-DRL, including the real attack mode and the training mode, see our User Guide.

References

For a research background regarding AutoPentest-DRL, please refer to the following references:

  • Z. Hu, R. Beuran, Y. Tan, "Automated Penetration Testing Using Deep Reinforcement Learning", IEEE European Symposium on Security and Privacy Workshops (EuroS&PW 2020), Workshop on Cyber Range Applications and Technologies (CACOE'20), Genova, Italy, September 7, 2020, pp. 2-10.
  • Z. Hu, "Automated Penetration Testing Using Deep Reinforcement Learning", Master's thesis, March 2021. https://hdl.handle.net/10119/17095

For a list of contributors to this project, see the file CONTRIBUTORS included in the distribution.

Comments
  • mulval topology template

    mulval topology template

    Hello, I just want to ask if I change the configuration of topology generator then I also have to change the topo_gen_template.P file content or is it a generic template. Thanks.

    opened by shoaib5261 7
  • Evaluating the model

    Evaluating the model

    Thank you for your support, but I have one more question. In the paper you wrote that this model has an accuracy of 0.86. I quite don't understand the method of evaluating, the data used for evaluating and whether that data is in this repo or not.

    Also, can you explain why the model has to train multiple times and the reward increases gradually? I think the simplified matrix holds all the possible paths so the model just need to loop through all paths and print out the desired one. Sorry for my weak understandings.

    Looking forward to your reply. Thank you!

    opened by QuynhNguyen269 5
  • FileNotFound error

    FileNotFound error

    Hi, I'm trying to run the code but it gives me multiple FileNotFound errors. Please help. Thank you!

    The output is:

    ################################################################################ AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning ################################################################################ AutoPentest-DRL: Operation mode: Attack on logical network AutoPentest-DRL: Target topology: MulVAL_P/logical_topology_1.P

    AutoPentest-DRL: Compute attack path for logical network... Generate attack graph using MulVAL... sh: 1: ../repos/mulval/utils/graph_gen.sh: not found Process attack graph into attack matrix... Traceback (most recent call last): File "/home/leekutti/NT522/AutoPentest-DRL/DQN/./confirm_path.py", line 9, in MAP = generateMapClass.sendMap File "./learn/generateMap.py", line 108, in sendMap self.x = self.createMatrix() File "./learn/generateMap.py", line 20, in createMatrix self.csvfile = open('../mulval_result/VERTICES.CSV', 'r') FileNotFoundError: [Errno 2] No such file or directory: '../mulval_result/VERTICES.CSV' Traceback (most recent call last): File "/home/leekutti/NT522/AutoPentest-DRL/DQN/learn/./dqn_learn.py", line 32, in env = gym.make('dqnenv-v0') File "/usr/local/lib/python3.9/dist-packages/gym/envs/registration.py", line 235, in make return registry.make(id, **kwargs) File "/usr/local/lib/python3.9/dist-packages/gym/envs/registration.py", line 129, in make env = spec.make(**kwargs) File "/usr/local/lib/python3.9/dist-packages/gym/envs/registration.py", line 89, in make cls = load(self.entry_point) File "/usr/local/lib/python3.9/dist-packages/gym/envs/registration.py", line 27, in load mod = importlib.import_module(mod_name) File "/usr/lib/python3.9/importlib/init.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "", line 1030, in _gcd_import File "", line 1007, in _find_and_load File "", line 986, in _find_and_load_unlocked File "", line 680, in _load_unlocked File "", line 790, in exec_module File "", line 228, in _call_with_frames_removed File "/home/leekutti/NT522/AutoPentest-DRL/DQN/learn/env/environment.py", line 12, in class dqnEnvironment(gym.Env): File "/home/leekutti/NT522/AutoPentest-DRL/DQN/learn/env/environment.py", line 14, in dqnEnvironment MAP = np.loadtxt('../processdata/newmap.txt') File "/usr/lib/python3/dist-packages/numpy/lib/npyio.py", line 961, in loadtxt fh = np.lib._datasource.open(fname, 'rt', encoding=encoding) File "/usr/lib/python3/dist-packages/numpy/lib/_datasource.py", line 195, in open return ds.open(path, mode, encoding=encoding, newline=newline) File "/usr/lib/python3/dist-packages/numpy/lib/_datasource.py", line 535, in open raise IOError("%s not found." % path) OSError: ../processdata/newmap.txt not found.

    opened by QuynhNguyen269 3
  • AssertionError: The environment must specify an observation space

    AssertionError: The environment must specify an observation space

    hi everyone, Please help. Thank you!


    The output is:


    Process attack graph into attack matrix... Traceback (most recent call last): File "./dqn_learn.py", line 32, in env = gym.make('dqnenv-v0') File "/usr/local/lib/python3.7/dist-packages/gym/envs/registration.py", line 685, in make env = PassiveEnvChecker(env) File "/usr/local/lib/python3.7/dist-packages/gym/wrappers/env_checker.py", line 26, in init ), "The environment must specify an observation space. https://www.gymlibrary.ml/content/environment_creation/" AssertionError: The environment must specify an observation space. https://www.gymlibrary.ml/content/environment_creation/

    opened by VisaCai 2
  • about article

    about article

    in the article《Automated Penetration Testing Using Deep Reinforcement Learning》 ,we find a index about the Accuracy, i have a Confuse。the accuracy is between the best DQN penetration path and true path. or others?

    opened by lixiaohaao 1
  • target drone

    target drone

    Sorry to bother you frequently,Regarding the construction of a multi-level network, like the network in your experiment, can you elaborate on how to build it?

    Looking forward to your reply LIxiao

    opened by lixiaohaao 1
Releases(1.0)
  • 1.0(Jun 1, 2021)

    First release of AutoPentest-DRL, an automated penetration testing framework based on Deep Reinforcement Learning (DRL) techniques. The framework can determine the most appropriate attack path for a given logical network, and can also be used to execute a penetration testing attack on a real network via tools such as Nmap and Metasploit.

    Source code(tar.gz)
    Source code(zip)
Owner
Cyber Range Organization and Design Chair
Cyber Range Organization and Design (CROND) NEC-endowed chair at JAIST conducts R&D on cybersecurity education and training
Cyber Range Organization and Design Chair
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
🔥RandLA-Net in Tensorflow (CVPR 2020, Oral & IEEE TPAMI 2021)

RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds (CVPR 2020) This is the official implementation of RandLA-Net (CVPR2020, Oral

Qingyong 1k Dec 30, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022