Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Overview

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster]

Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019. [Project Website]

"With two time steps and each contains 7 RDBs, the proposed GMFN achieves better reconstruction performance compared to state-of-the-art image SR methods including RDN which contains 16 RDBs."

This repository is Pytorch code for our proposed SRFBN.

The code is developed by Paper99 and penguin1214 based on BasicSR, and tested on Ubuntu 16.04/18.04 environment (Python 3.6/3/7, PyTorch 0.4.0/1.0.0/1.0.1, CUDA 8.0/9.0/10.0) with 2080Ti/1080Ti GPUs.

The architecture of our proposed SRFBN. Blue arrows represent feedback connections. The details about our proposed SRFBN can be found in our main paper.

If you find our work useful in your research or publications, please consider citing:

@inproceedings{li2019srfbn,
    author = {Li, Zhen and Yang, Jinglei and Liu, Zheng and Yang, Xiaomin and Jeon, Gwanggil and Wu, Wei},
    title = {Feedback Network for Image Super-Resolution},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year= {2019}
}

@inproceedings{wang2018esrgan,
    author = {Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Loy, Chen Change},
    title = {ESRGAN: Enhanced super-resolution generative adversarial networks},
    booktitle = {The European Conference on Computer Vision Workshops (ECCVW)},
    year = {2018}
}

Contents

  1. Requirements
  2. Test
  3. Train
  4. Results
  5. Acknowledgements

Requirements

  • Python 3 (Anaconda is recommended)
  • skimage
  • imageio
  • Pytorch (Pytorch version >=0.4.1 is recommended)
  • tqdm
  • pandas
  • cv2 (pip install opencv-python)
  • Matlab

Test

Quick start

  1. Clone this repository:

    git clone https://github.com/Paper99/SRFBN_CVPR19.git
  2. Download our pre-trained models from the links below, unzip the models and place them to ./models.

    Model Param. Links
    SRFBN 3,631K [GoogleDrive] [BaiduYun](code:6qta)
    SRFBN-S 483K [GoogleDrive] [BaiduYun](code:r4cp)
  3. Then, cd to SRFBN_CVPR19 and run one of following commands for evaluation on Set5:

    # SRFBN
    python test.py -opt options/test/test_SRFBN_x2_BI.json
    python test.py -opt options/test/test_SRFBN_x3_BI.json
    python test.py -opt options/test/test_SRFBN_x4_BI.json
    python test.py -opt options/test/test_SRFBN_x3_BD.json
    python test.py -opt options/test/test_SRFBN_x3_DN.json
    
    # SRFBN-S
    python test.py -opt options/test/test_SRFBN-S_x2_BI.json
    python test.py -opt options/test/test_SRFBN-S_x3_BI.json
    python test.py -opt options/test/test_SRFBN-S_x4_BI.json
  4. Finally, PSNR/SSIM values for Set5 are shown on your screen, you can find the reconstruction images in ./results.

Test on standard SR benchmark

  1. If you have cloned this repository and downloaded our pre-trained models, you can first download SR benchmark (Set5, Set14, B100, Urban100 and Manga109) from GoogleDrive or BaiduYun(code:z6nz).

  2. Run ./results/Prepare_TestData_HR_LR.m in Matlab to generate HR/LR images with different degradation models.

  3. Edit ./options/test/test_SRFBN_example.json for your needs according to ./options/test/README.md.

  4. Then, run command:

    cd SRFBN_CVPR19
    python test.py -opt options/test/test_SRFBN_example.json
  5. Finally, PSNR/SSIM values are shown on your screen, you can find the reconstruction images in ./results. You can further evaluate SR results using ./results/Evaluate_PSNR_SSIM.m.

Test on your own images

  1. If you have cloned this repository and downloaded our pre-trained models, you can first place your own images to ./results/LR/MyImage.

  2. Edit ./options/test/test_SRFBN_example.json for your needs according to ./options/test/README.md.

  3. Then, run command:

    cd SRFBN_CVPR19
    python test.py -opt options/test/test_SRFBN_example.json
  4. Finally, you can find the reconstruction images in ./results.

Train

  1. Download training set DIV2K [Official Link] or DF2K [GoogleDrive] [BaiduYun] (provided by BasicSR).

  2. Run ./scripts/Prepare_TrainData_HR_LR.m in Matlab to generate HR/LR training pairs with corresponding degradation model and scale factor. (Note: Please place generated training data to SSD (Solid-State Drive) for fast training)

  3. Run ./results/Prepare_TestData_HR_LR.m in Matlab to generate HR/LR test images with corresponding degradation model and scale factor, and choose one of SR benchmark for evaluation during training.

  4. Edit ./options/train/train_SRFBN_example.json for your needs according to ./options/train/README.md.

  5. Then, run command:

    cd SRFBN_CVPR19
    python train.py -opt options/train/train_SRFBN_example.json
  6. You can monitor the training process in ./experiments.

  7. Finally, you can follow the test pipeline to evaluate your model.

Results

Quantitative Results

Average PSNR/SSIM for scale factors x2, x3 and x4 with BI degradation model. The best performance is shown in red and the second best performance is shown in blue.

Average PSNR/SSIM values for scale factor x3 with BD and DN degradation models. The best performance is shown in red and the second best performance is shown in blue.

More Qualitative Results

Qualitative results with BI degradation model (x4) on “img 004” from Urban100.

Qualitative results with BD degradation model (x3) on “MisutenaideDaisy” from Manga109.

Qualitative results with DN degradation model (x3) on “head” from Set14.

TODO

  • Curriculum learning for complex degradation models (i.e. BD and DN degradation models).

Acknowledgements

  • Thank penguin1214, who accompanies me to develop this repository.
  • Thank Xintao. Our code structure is derived from his repository BasicSR.
  • Thank authors of BasicSR/RDN/EDSR. They provide many useful codes which facilitate our work.
Owner
Zhen Li
Glad to see you.
Zhen Li
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
DABO: Data Augmentation with Bilevel Optimization

DABO: Data Augmentation with Bilevel Optimization [Paper] The goal is to automatically learn an efficient data augmentation regime for image classific

ElementAI 24 Aug 12, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022