Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

Related tags

Deep LearningPhySG
Overview

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

Quick start

  • Create conda environment
conda env create -f environment.yml
conda activate PhySG
  • Download example data from google drive.

  • Optimize for geometry and material given a set of posed images and object segmentation masks

cd code
~~python training/exp_runner.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/train \
                              --expname kitty \
                              --nepoch 2000 --max_niter 200001 \
                              --gamma 1.0
  • Render novel views, relighting and mesh extraction, etc.
cd code
# use same lighting as training
python evaluation/eval.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/test \
                              --expname kitty \
                              --gamma 1.0 --resolution 256 --save_exr
# plug in new lighting                              
python evaluation/eval.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/test \
                              --expname kitty \
                              --gamma 1.0 --resolution 256 --save_exr \
                              --light_sg ./envmaps/envmap3_sg_fit/tmp_lgtSGs_100.npy

Tips: for viewing exr images, you can use tev hdr viewer.

Some important pointers

  • code/model/sg_render.py: core of the appearance modelling that evaluates rendering equation using spherical Gaussians.
    • code/model/sg_envmap_convention.png: coordinate system convention for the envmap.
  • code/model/sg_envmap_material.py: optimizable parameters for the material part.
  • code/model/implicit_differentiable_renderer.py: optimizable parameters for the geometry part; it also contains our foward rendering code.
  • code/training/idr_train.py: SGD optimization of unknown geometry and material.
  • code/evaluation/eval.py: novel view rendering, relighting, mesh extraction, etc.
  • code/envmaps/fit_envmap_with_sg.py: represent an envmap with mixture of spherical Gaussians. We provide three envmaps represented by spherical Gaussians optimized via this script in the 'code/envmaps' folder.

Prepare your own data

  • Organize the images and masks in the same way as the provided data.
  • As to camera parameters, we follow the same convention as NeRF++ to use OpenCV conventions.

Acknowledgements: this codebase borrows a lot from the awesome IDR work; we thank the authors for releasing their code.

Owner
Kai Zhang
PhD candidate at Cornell.
Kai Zhang
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023