Experiment about Deep Person Re-identification with EfficientNet-v2

Overview

deep-efficient-person-reid

Experiment for an uni project with strong baseline for Person Re-identification task.

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and CUHK03.


Pipeline

pipeline


Implementation Details

  • Random Erasing to transform input images.
  • EfficientNet-v2 / Resnet50 / Resnet50-IBN-A as backbone.
  • Stride = 1 for last convolution layer. Embedding size for Resnet50 / Resnet50-IBN-A is 2048, while for EfficientNet-v2 is 1280. During inference, embedding features will run through a batch norm layer, as known as a bottleneck for better normalization.
  • Loss function combining 3 losses:
    1. Triplet Loss with Hard Example Mining.
    2. Classification Loss (Cross Entropy) with Label Smoothing.
    3. Centroid Loss - Center Loss for reducing the distance of embeddings to its class center. When combining it with Classification Loss, it helps preventing embeddings from collapsing.
  • The default optimizer is AMSgrad with base learning rate of 3.5e-4 and multistep learning rate scheduler, decayed at epoch 30th and epoch 55th. Besides, we also apply mixed precision in training.
  • In both datasets, pretrained models were trained for 60 epochs and non-pretrained models were trained for 100 epochs.

Source Structure

.
├── config                  # hyperparameters settings
│   └── ...                 # yaml files
├
├── datasets                # data loader
│   └── ...           
├
├── market1501              # market-1501 dataset
|
├── cuhk03_release          # cuhk03 dataset
|
├── samplers                # random samplers
│   └── ...
|
├── loggers                 # test weights and visualization results      
|   └── runs
|   
├── losses                  # loss functions
│   └── ...   
|
├── nets                    # models
│   └── bacbones            
│       └── ... 
│   
├── engine                  # training and testing procedures
│   └── ...    
|
├── metrics                 # mAP and re-ranking
│   └── ...   
|
├── utils                   # wrapper and util functions 
│   └── ...
|
├── train.py                # train code 
|
├── test.py                 # test code 
|
├── visualize.py            # visualize results 

Pretrained Models (on ImageNet)

  • EfficientNet-v2: link
  • Resnet50-IBN-A: link

Notebook

  • Notebook to train, inference and visualize: Notebook

Setup


  • Install dependencies, change directory to dertorch:
pip install -r requirements.txt
cd dertorch/

  • Modify config files in /configs/. You can play with the parameters for better training, testing.

  • Training:
python train.py --config_file=name_of_config_file
Ex: python train.py --config_file=efficientnetv2_market

  • Testing: Save in /loggers/runs, for example the result from EfficientNet-v2 (Market-1501): link
python test.py --config_file=name_of_config_file
Ex: python test.py --config_file=efficientnetv2_market

  • Visualization: Save in /loggers/runs/results/, for example the result from EfficienNet-v2 (Market-1501): link
python visualize.py --config_file=name_of_config_file
Ex: python visualize.py --config_file=efficientnetv2_market

Examples


Query image 1 query1


Result image 1 result1


Query image 2 query2


Result image 2 result2


Results

  • Market-1501
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) 256x128 51.8 74.0 88.2 93.0 link
EfficientNet-v2 (non-pretrained) 256x128 56.5 78.5 91.1 94.4 link
Resnet50-IBN-A 256x128 77.1 90.7 97.0 98.4 link
EfficientNet-v2 256x128 69.7 87.1 95.3 97.2 link
Resnet50-IBN-A + Re-ranking 256x128 89.8 92.1 96.5 97.7 link
EfficientNet-v2 + Re-ranking 256x128 85.6 89.9 94.7 96.2 link

  • CUHK03:
Models Image Size mAP Rank-1 Rank-5 Rank-10 weights
Resnet50 (non-pretrained) ... ... ... ... ... ...
EfficientNet-v2 (non-pretrained) 256x128 10.1 10.1 21.1 29.5 link
Resnet50-IBN-A 256x128 41.2 41.8 63.1 71.2 link
EfficientNet-v2 256x128 40.6 42.9 63.1 72.5 link
Resnet50-IBN-A + Re-ranking 256x128 55.6 51.2 64.0 72.0 link
EfficientNet-v2 + Re-ranking 256x128 56.0 51.4 64.7 73.4 link

The results from EfficientNet-v2 models might be better if fine-tuning properly and longer training epochs, while here we use the best parameters for the ResNet models (on Market-1501 dataset) from this paper and only trained for 60 - 100 epochs.


Citation

@article{DBLP:journals/corr/abs-2104-13643,
  author    = {Mikolaj Wieczorek and
               Barbara Rychalska and
               Jacek Dabrowski},
  title     = {On the Unreasonable Effectiveness of Centroids in Image Retrieval},
  journal   = {CoRR},
  volume    = {abs/2104.13643},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.13643},
  archivePrefix = {arXiv},
  eprint    = {2104.13643},
  timestamp = {Tue, 04 May 2021 15:12:43 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-13643.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@InProceedings{Luo_2019_CVPR_Workshops,
author = {Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei},
title = {Bag of Tricks and a Strong Baseline for Deep Person Re-Identification},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}
}

Adapted from: michuanhaohao

Owner
lan.nguyen2k
Tensor Boy
lan.nguyen2k
TigerLily: Finding drug interactions in silico with the Graph.

Drug Interaction Prediction with Tigerlily Documentation | Example Notebook | Youtube Video | Project Report Tigerlily is a TigerGraph based system de

Benedek Rozemberczki 91 Dec 30, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022