Kindle is an easy model build package for PyTorch.

Overview

Kindle - PyTorch no-code model builder

PyPI - Python Version PyTorch Version GitHub Workflow Status PyPI LGTM Alerts

Documentation
API reference

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? when we can simply build a model with yaml markup file.

Kindle builds a model with no code but yaml file which its method is inspired from YOLOv5.

Contents

Installation

Install with pip

PyTorch is required prior to install. Please visit PyTorch installation guide to install.

You can install kindle by pip.

$ pip install kindle

Install from source

Please visit Install from source wiki page

For contributors

Please visit For contributors wiki page

Usage

Build a model

  1. Make model yaml file
input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

backbone:
    # [from, repeat, module, args]
    [
        [-1, 1, Conv, [6, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Conv, [16, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]
  1. Build the model with kindle
from kindle import Model

model = Model("model.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |        616 |            Conv |         [6, 5, 1, 0] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |      3,232 |            Conv |        [16, 5, 1, 0] |                      [8 16 16] |    [16, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [16 16 16] |      [16, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [16 8 8] |          [1024] |
  5 |         -1 |   1 |    123,000 |          Linear |        [120, 'ReLU'] |                         [1024] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 21 layers, 137,862 parameters, 137,862 gradients

AutoML with Kindle

  • Kindle offers the easiest way to build your own deep learning architecture. Beyond building a model, AutoML became easier with Kindle and Optuna or other optimization frameworks.
  • For further information, please refer to here

Supported modules

  • Detailed documents can be found here
Module Components Arguments
Conv Conv -> BatchNorm -> Activation [channel, kernel size, stride, padding, activation]
DWConv DWConv -> BatchNorm -> Activation [channel, kernel_size, stride, padding, activation]
Bottleneck Expansion ConvBNAct -> ConvBNAct [channel, shortcut, groups, expansion, activation]
AvgPool Average pooling [kernel_size, stride, padding]
MaxPool Max pooling [kernel_size, stride, padding]
GlobalAvgPool Global Average Pooling []
Flatten Flatten []
Concat Concatenation [dimension]
Linear Linear [channel, activation]
Add Add []

Custom module support

Custom module with yaml

You can make your own custom module with yaml file.

1. custom_module.yaml

args: [96, 32]

module:
    # [from, repeat, module, args]
    [
        [-1, 1, Conv, [arg0, 1, 1]],
        [0, 1, Conv, [arg1, 3, 1]],
        [0, 1, Conv, [arg1, 5, 1]],
        [0, 1, Conv, [arg1, 7, 1]],
        [[1, 2, 3], 1, Concat, [1]],
        [[0, 4], 1, Add, []],
    ]
  • Arguments of yaml module can be defined as arg0, arg1 ...

2. model_with_custom_module.yaml

input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

backbone:
    [
        [-1, 1, Conv, [6, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, YamlModule, ["custom_module.yaml", 48, 16]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]
  • Note that argument of yaml module can be provided.

3. Build model

from kindle import Model

model = Model("model_with_custom_module.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |        616 |            Conv |         [6, 5, 1, 0] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |     10,832 |      YamlModule |    ['custom_module'] |                      [8 16 16] |    [24, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [24 16 16] |      [24, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [24 8 8] |          [1536] |
  5 |         -1 |   1 |    184,440 |          Linear |        [120, 'ReLU'] |                         [1536] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 36 layers, 206,902 parameters, 206,902 gradients

Custom module from source

You can make your own custom module from the source.

1. custom_module_model.yaml

input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

custom_module_paths: ["tests.test_custom_module"]  # Paths to the custom modules of the source

backbone:
    # [from, repeat, module, args]
    [
        [-1, 1, MyConv, [6, 5, 3]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, MyConv, [16, 3, 5, SiLU]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]

2. Write PyTorch module and ModuleGenerator

tests/test_custom_module.py

from typing import List, Union

import numpy as np
import torch
from torch import nn

from kindle.generator import GeneratorAbstract
from kindle.torch_utils import Activation, autopad


class MyConv(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        n: int,
        activation: Union[str, None] = "ReLU",
    ) -> None:
        super().__init__()
        convs = []
        for i in range(n):
            convs.append(
                nn.Conv2d(
                    in_channels,
                    in_channels if (i + 1) != n else out_channels,
                    kernel_size,
                    padding=autopad(kernel_size),
                    bias=False,
                )
            )

        self.convs = nn.Sequential(*convs)
        self.batch_norm = nn.BatchNorm2d(out_channels)
        self.activation = Activation(activation)()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.activation(self.batch_norm(self.convs(x)))


class MyConvGenerator(GeneratorAbstract):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    @property
    def out_channel(self) -> int:
        return self._get_divisible_channel(self.args[0] * self.width_multiply)

    @property
    def in_channel(self) -> int:
        if isinstance(self.from_idx, list):
            raise Exception("from_idx can not be a list.")
        return self.in_channels[self.from_idx]

    @torch.no_grad()
    def compute_out_shape(self, size: np.ndarray, repeat: int = 1) -> List[int]:
        module = self(repeat=repeat)
        module.eval()
        module_out = module(torch.zeros([1, *list(size)]))
        return list(module_out.shape[-3:])

    def __call__(self, repeat: int = 1) -> nn.Module:
        args = [self.in_channel, self.out_channel, *self.args[1:]]
        if repeat > 1:
            module = [MyConv(*args) for _ in range(repeat)]
        else:
            module = MyConv(*args)

        return self._get_module(module)

3. Build a model

from kindle import Model

model = Model("custom_module_model.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |      1,066 |          MyConv |            [6, 5, 3] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |      3,488 |          MyConv |   [16, 3, 5, 'SiLU'] |                      [8 16 16] |    [16, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [16 16 16] |      [16, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [16 8 8] |          [1024] |
  5 |         -1 |   1 |    123,000 |          Linear |        [120, 'ReLU'] |                         [1024] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 29 layers, 138,568 parameters, 138,568 gradients

Planned features

  • Custom module support
  • Custom module with yaml support
  • Use pre-trained model
  • More modules!
Owner
Jongkuk Lim
Deep Learning, Machine Learning, Data Science, Edge Computing, Fitness Enthusiast
Jongkuk Lim
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022