PyTorch Connectomics: segmentation toolbox for EM connectomics

Overview


Introduction

The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individual synapses. Recent advances in electronic microscopy (EM) have enabled the collection of a large number of image stacks at nanometer resolution, but the annotation requires expertise and is super time-consuming. Here we provide a deep learning framework powered by PyTorch for automatic and semi-automatic semantic and instance segmentation in connectomics, which is called PyTorch Connectomics (PyTC). This repository is mainly maintained by the Visual Computing Group (VCG) at Harvard University.

PyTorch Connectomics is currently under active development!

Key Features

  • Multi-task, Active and Semi-supervised Learning
  • Distributed and Mixed-precision Training
  • Scalability for Handling Large Datasets

If you want new features that are relatively easy to implement (e.g., loss functions, models), please open a feature requirement discussion in issues or implement by yourself and submit a pull request. For other features that requires substantial amount of design and coding, please contact the author directly.

Environment

The code is developed and tested under the following configurations.

  • Hardware: 1-8 Nvidia GPUs with at least 12G GPU memory (change SYSTEM.NUM_GPU accordingly based on the configuration of your machine)
  • Software: CentOS Linux 7.4 (Core), CUDA>=11.1, Python>=3.8, PyTorch>=1.9.0, YACS>=0.1.8

Installation

Create a new conda environment and install PyTorch:

conda create -n py3_torch python=3.8
source activate py3_torch
conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia

Please note that this package is mainly developed on the Harvard FASRC cluster. More information about GPU computing on the FASRC cluster can be found here.

Download and install the package:

git clone https://github.com/zudi-lin/pytorch_connectomics.git
cd pytorch_connectomics
pip install --upgrade pip
pip install --editable .

Since the package is under active development, the editable installation will allow any changes to the original package to reflect directly in the environment. For more information and frequently asked questions about installation, please check the installation guide.

Notes

Data Augmentation

We provide a data augmentation interface several different kinds of commonly used augmentation method for EM images. The interface is pure-python, and operate on and output only numpy arrays, so it can be easily incorporated into any kinds of python-based deep learning frameworks (e.g., TensorFlow). For more details about the design of the data augmentation module, please check the documentation.

YACS Configuration

We use the Yet Another Configuration System (YACS) library to manage the settings and hyperparameters in model training and inference. The configuration files for tutorial examples can be found here. All available configuration options can be found at connectomics/config/defaults.py. Please note that the default value of several options is None, which is only supported after YACS v0.1.8.

Segmentation Models

We provide several encoder-decoder architectures, which are customized 3D UNet and Feature Pyramid Network (FPN) models with various blocks and backbones. Those models can be applied for both semantic segmentation and bottom-up instance segmentation of 3D image stacks. Those models can also be constructed specifically for isotropic and anisotropic datasets. Please check the documentation for more details.

Acknowledgement

This project is built upon numerous previous projects. Especially, we'd like to thank the contributors of the following github repositories:

License

This project is licensed under the MIT License and the copyright belongs to all PyTorch Connectomics contributors - see the LICENSE file for details.

Citation

If you find PyTorch Connectomics (PyTC) useful in your research, please cite:

@misc{lin2019pytorchconnectomics,
  author =       {Zudi Lin and Donglai Wei},
  title =        {PyTorch Connectomics},
  howpublished = {\url{https://github.com/zudi-lin/pytorch_connectomics}},
  year =         {2019}
}
Owner
Zudi Lin
CS Ph.D. student at Harvard
Zudi Lin
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland πŸ”₯

Jiaxi Jiang 282 Jan 02, 2023
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
Code for testing convergence rates of Lipschitz learning on graphs

πŸ“ˆ LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022