A repo with study material, exercises, examples, etc for Devnet SPAUTO

Overview

MPLS in the SDN Era --> DevNet SPAUTO

Get right to the study material: Checkout the Wiki!

A lab topology based on MPLS in the SDN era book used for 300-535 SPAUTO studies.

Cisco Certified DevNet Specialist - Service Provider Automation and Programmability

Why MPLS in the SDN Era?

Simple. This is an incredible book for any and all Network Engineers interested in learning technologies used in Service Provider environments. The book is heavily focused on MPLS, SDN, Segment-Routing, BGP, L2VPN/L3VPNs, over-all traffic engineering and much more. These are common terms within SP networks and the book does an incredible job in guiding the audience while exploring the device configurations in this topology.

MPLS IN THE SDN ERA This book goes through a number of device configurations in a multi-vendor lab topology (Cisco IOSXR && Juniper)

For this lab, all devices have been replaced with Cisco-IOSXR/XE as we are working on a Cisco Certification.

Authors of the book:

  • Antonio Sanchez Monge (Author)
  • Krzysztof Grzegorz Szarkowicz (Author)

To fully automate Service Provider Networks, you must understand Service Provider Networks.

Get the book

What does this repository include & cover?

My goal is to gather all of my self-training in this repostiroy and cover all the major Cisco Certified DevNet Specialist (300-535 SPAUTO) topics. Starting with NSO because I have zero exposure to it professionally.

Extras:

There will be some extra material in this repository that can be an aid for other areas including but not limited to:

- Batfish
- Nornir

How can I use this repo to study?

I recommend for you to have access to a virtual lab environment that can run this topology. There are a total of 17 devices running in the lab scenario. 8 of them are IOSXR devices, which can consume up to 3GB each.

At this time, the lab configurations are not fully built. Once that is complete, I will be including a lab topology file with all the necessary information, etc. to import into a EVE-NG.

Checkout the Wiki!

30% of the SPAUTO exam is around Automation and Orchestration platforms, such as NSO. I can't stress enough the importance of taking the time to setup an NSO instance to explore and take advantage of the many examples in this repository.

Why rely on this complicated lab topology?

I learn better when I am doing, not just reading and specially when breaking things. Having this complicated topology, building all the services in an automated way will be key to our success in passing the certification. There will be tons of material in the end that will cover all the topics in the exam.

TODO: "breakout sections for each major topic"

Owner
Hugo Tinoco
Hugo Tinoco
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022